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The "gauge technique" for solving field theories introduced in an earlier paper is applied to scalar and 
vector electrodynamics. It is shown that for scalar electrodynamics there is no \<p*2<p2 infinity in the theory, 
while with conventional subtractions vector electrodynamics is completely finite. The essential ideas of the 
guage technique are explained in Part II , Sec. 1 of the paper, and a preliminary set of rules for finite 
computation in vector electrodynamics is set out in Part III, Sec. 2. 

INTRODUCTION 

THE phenomenal success of renormalized perturba­
tion theory for electron-photon interactions has 

on balance probably been a disaster for the development 
of quantum field theory as such. The disaster lay in the 
somewhat fortuitous circumstance that the magnitudes 
which the theory was powerless to compute happened 
to be "unobservable" quantities like self-mass and self-
charge. Even when for renormalized meson interactions 
it became apparent that such magnitudes included 
measurable quantities like the T+—TT° (self-) mass 
differences, theoretical interest unfortunately did not 
shift back to the central problem of trying to discover if 
there might exist nonperturbative solutions of field-
theory integral equations for which all measurable 
5-matrix elements can be computed in finite terms. 

Physically, of course, the most attractive possibility 
would be if at least for some theories—and this may 
include those that are currently considered nonre-
normalizable—finite solutions did exist but only for 
special values1 of the constants of field theory. In an 
earlier paper2 it was suggested that this last possibility 
might be the one realized for electrodynamics of spin-one 
charged mesons. The suggestion was based on the use 
of a new (nonperturbative) approximation procedure 
which made consistent use of Ward's identity. One 
purpose of the present paper is to exploit this approxi-

* Work supported in part by the Air Force Office of Scientific 
Research OAR through the European Office, Aerospace Research, 
U. S. Air Force. 

t Work supported in part by the U. S. Atomic Energy Commis­
sion, the National Science Foundation, and the Research Com­
mittee of the Graduate School of Wisconsin from special funds 
voted by the State Legislature. 

*In this context the following remarks of A. Einstein [Phys. 
Rev. 89, 329 (1953)] are possibly relevant: "If there exist ele­
mentary solutions of the equations which depend upon a con­
tinuous parameter, then the field equations must prevent the 
coexistence within one system of such elementary solutions per­
taining to arbitrary values of their parameters • • • . If a theory 
does not possess these features then the theory is inadmissible." 
We are indebted to Dr. J. Bronowski for pointing out this reference. 

2 A. Salam, Phys. Rev. 130, 1287 (1963). This paper will be 
referred to as I. 
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mation technique not only for the electrodynamics of 
spin-one, but also of spin-zero mesons. Even though in 
the latter case one is dealing with a theory with only a 
few infinities, it is instructive to see how at least some 
of these disappear at the crudest attempt to improve the 
conventional perturbation approximation. For the spin-
one case, this technique makes the theory finite, though 
the conjecture about the constants of the theory is not 
realized in the strong form it was stated in in Ref. 2. 

The paper is divided into four parts: Part I gives the 
main theoretical ideas and the general approximational 
scheme; Part II sets out the equations for the general-
two- and three-particle Green's functions, in the two 
particle unitarity approximation, in scalar and vector-
electrodynamics ; in Part III these equations are solved 
consistently with the requirements of analyticity and 
unitarity of the theory; and in Part IV we use these 
solutions to state rules for computations of general 
S-matrix elements. These rules take the place of the 
Feynman rules and even in the preliminary version of 
this paper provide finite integrals (including those for 
some of the renormalization constants). 

The paper unfortunately is long. The impatient reader 
may perhaps find it easier to go straight on to Part II 
Sec. 1 which briefly sets out the main ideas of the calcu-
lational technique before returning to Part I. 

Part I 
This part is an amplification of the ideas of paper I. 

In Sec. 1A we derive a boundary condition for the high-
energy behavior of (a product of) the basic two- and 
three-particle Green's functions. If this boundary con­
dition is satisfied, integrals involved in all other Green's 
functions would exhibit an approximational stability for 
high energy behavior and will be essentially finite. In 
Sec. IB we turn to the basic Green's function and show 
that for gauge theories an approximation technique 
exists which makes the vertex-function equation essen­
tially redundant, so that the general boundary condition 
is equivalent in such theories to a high-energy limitation 
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on the behavior of just the two-particle propagators. 
This allows us finally in Sec. 1C to connect the finiteness 
(of all integrals) in a gauge theory with the information 
on high-energy behavior contained in the well-known 
spectral representation of the propagator. 

1. THE INTEGRAL EQUATIONS OF FIELD THEORY 

A field theory is defined by a set of integral relations 
among its Green's functions. As a rule all such relations 
involve an infinite number of terms; thus, of their nature 
the integral equations need some type of approximation 
procedure for their solution. Depending on the approxi­
mation procedure to be followed, one can write down a 
wide variety of equivalent sets for one and the same 
theory. One such set is due to Dyson3 and Schwinger4; 
another is the unitarity set defined in Sec. 1C; still 
another set is due to Symanzik.5 

A. Dyson-Schwinger Set; (the fundamental criterion for 
the stability of an approximation scheme and high-

energy boundary conditions onT, D, and S) 

For a typical 3-field (e.g., electron-photon) interaction 
the well-known Dyson equations are 

5-1=Z250-1+Z1e2 / TSToD (LI) 

D-^ZzDo-'+Zte2 / VSToS (1.2) 

r = Z i I V N 2 / TSTSTD+e*- • - (1.3) 

i l f=Af[r ,A5] . (1.4) 

S and D ,-are the (renormalized) electron and photon 
Green's functions; T is the (renormalized) vertex func­
tion and e is the physical charge.6 The three functions 
r , D, and S we shall refer to as the basic Green's func­
tions. M represents any other Green's function; the 

3 F . J. Dyson, Phys. Rev. 75, 1736 (1949). 
4 The Schwinger formulation of Green's function theory [J. 

Schwinger, Proc. Natl. Acad. Sci. (U.S.) 37, 452 (1951)] is 
parallel to the Dyson (Ref. 3) formulation above; it however 
offers some advantages for gauge theories (see Part III , Sec. 3). 

5 K. Symanzik, J. Math. Phys. 1, 249 (1960); an extensive study 
of this set has recently been completed by J. G. Taylor, Nuovo 
Cimento (to be published). 

6 The constants Zi, Z2, Z% occur in the Lagrangian and are 
themselves defined as boundary values of S, Df and T. For elec­
trodynamics So~1=:y'p~mo, JDo~1 = ^2—Mo2. r 0 = 7 and wo2 and 
Ho2 (which always appear multiplied by Z% and Z3, respectively) 
are the unrenormalized mass constants. Graphically, the Dyson-
Schwinger set corresponds to the drawing of Dyson's irreducible 
diagrams for any Green's function and then making vertex and 
self-energy corrections to these. For all 3-field interactions the 
structure of the Eqs. (1.1)-(1.4) is the same, the distinctive dif­
ferences of one Lagrangian from another appear only in the speci­
fication of the inhomogeneous terms So, D0, and To. Also if 4-field 
interactions occur in the Lagrangian, this only increases the num­
ber of what we have called the basic Green's functions. 

important remark of the Dyson formalism is that all 
M's are functionals of the three basic Green's functions 
r , S, and DJ 

The Feynman solution of field theory is recovered as 
a power series iteration of (LI)-(1.3), the iteration 
starting with 

5 - i = 7 . ^ _ w ? D-i==p2_fX2j a n ( j z 1 = Z 2 = Z 8 = l . 

This assumption of course immediately precludes the 
possibility that the Z's might be zero. {It is worth re­
marking that these zeroth approximations (e.g., 
S~1 = yp—m) do not coincide with the inhomogeneous 
terms of the corresponding integral equations [e.g., 
Z2(y'p-m0)J} 

In the sequel, we wish to set up a different approxi­
mation procedure for solving a field theory. Basically, 
the idea is to find nonperturbative solutions of the 
basic set (L1)-(L3) and then to substitute for Dy Sy 

and r in (1,4). To estimate the high-energy behavior of 
the integrals involved in M, one knows from Dyson-
Schwinger formalism that M = £ M(N\ where Mm 

has the following structure: 

Af(*)= (STD1/2)NS-E*/2D-Ey/2 

X (d%) iw-B^Ey) /2+1]. ( i .5) 

Here Ey and Ee are the number of external photon and 
electron lines and N is the number of irreducible vertices. 
Now it is clear from (1.5) that the high-energy behavior 
of the integrand (and therefore of the integral as a 
function of external momenta) is independent of the 
order of iteration8 N if and only if9 

STD1/2=0(l/k2) (1.6) 

for large k. Equation (1.6) is the fundamental criterion 
for the stability of any approximation procedure for 
computing M which bases itself on the Dyson formalism. 
It serves as the boundary condition to be satisfied by 
the (product of the) three basic Green's functions. 

This stability criterion is satisfied by the basic Green's 
functions in all "renormalizable" theories. A straight-

7 The lack of symmetry between r and To in Eqs. (LI) and (1.2) 
has always been an embarrassment (the well-known problem of 
"b divergences"). One recent suggestion to deal with this problem 
is due to Symanzik (Ref. 5). Other alternatives are due to A. 
Salam [Phys. Rev. 82, 217 (1951)] and J. C. Ward [Phys. Rev. 
84, 897 (1951)]. All these proposed solutions convert the single 
term on the right-hand side of (1.1) or (1.2) into a series in e2 and 
show that the integral behaves effectively like fFSTD. To see 
this at its simplest, eliminate Z{To in (1.1) and (1.2), by using 
(1.3), i.e., set ZiT0 = -e2fTSTSTD-i . The treatment of this 
problem in the text (see the unitarity set Sec. 1C automatically 
restores the "a" and "b" vertex symmetry). 

8 If this is the case the only integrals of type M^N) which may 
still be nonfinite and divergent belong to the class satisfying 
[2-s/22Ee+Ey<4: where s is given by S 0 =0[1 /K] . The relation 
of these infinities to the subtraction constants in renormalization 
theory is well known and will be discussed as the occasion arises. 

9 More precisely, it is stated by the stability criterion that 
S^^iP^p'v'b'ipyp'ASv'yWifiDbaWit) should decrease as fast or 
faster than 1/(length)2 along any direction in th6 (p,pf) plane. 
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forward iteration of (I.l)-(1.3) shows that S^So 
= 0(1/*), D~D0=O(l/k2), r « r 0 = O ( l ) for spinor 
electrodynamics and S~S0^O(l/k2), T~TQ=0(k) for 
electrodynamics of spin-zero particles.10 Our contention 
in paper I was that the boundary condition (1.6) can 
be satisfied by the solutions of Eqs. (1.1)-(1.3) even for 
some nonrenormalizable theories, provided these equa­
tions are solved nonperturbatively. The present paper 
is concerned with a detailed verification of this state­
ment for electrodynamics of spin-one particles. We have 
chosen electrodynamics4 as the prime example because 
a proper use of Ward's identity makes the problem of 
finding nonperturbative solutions much easier, and be­
cause for such theories, condition (1.6) can be reduced 
(as will be shown in Sec. IB) to a boundary condition 
on the charged particle propagator alone. Just to illus­
trate how the new technique in any case improves the 
convergence properties of the integrals in field theory, 
we consider also the conventionally renormalizable 
theory of electrodynamics of spin-zero particles. 

B. The Gauge Approximation and a Reformulation 
of the Stability Criterion 

In a gauge invariant theory as a consequence of 
current conservation, the vertex function V and the 
propagator S satisfy the Ward-Takahashi identity 

MP^S-KP^S-KP'); P=P'+t. (1.7) 
This identity makes Eq. (1.1) of the Dyson-Schwinger 
set redundant. In fact one may define S from the relation 

S-l(p) = taTa(p,p')\y.p>-m. (1.8) 

Also, Zi=Z2 ( = Z). Conversely, of course, the identity 
states that if S is known a part of V is determined and 
is no longer arbitrary. We shall call this part I^QS]; thus 

T=TAIS2+TB, 
where 

taTa^^S-iS'-i, OV^O. (1.9) 

Now these identities do not in any way uniquely define 
the split of T, but whatever the precise definition of 
r A [5 ] , since ZSo'1 is part of 5 [see Eq. (1.1)], zr 0 a , the 
inhomogeneous part of the vertex function equation 
which is (usually) defined as Z{S<rl—SQ-l)(p+pf)a/ 
(p2-p'2)> must form part of r 4 [ 5 ] . Therefore, quite 
generally, ZT0 can be eliminated in Eq. (1.3) in terms 
of T^ in the following manner: Write Eq. (1.3) in the 
form 
_____ ra=zr0a+iS'aCr,5]. (i.io) 

10 It is important to emphasize that the stability criterion 
guarantees a uniformity of high-energy behavior in each order of 
iteration, only to the extent of a power count of external momenta. 
The extra powers of logarithms which arise in each order M(Ar) 

can lead to a different behavior for the sum of the series M{N); 
our problem in this paper is not the determination of the high 
energy behavior of this sum 2ilf <N\ our concern is with each term 

Define 
Ta

A=ZToa+Fa, (1.11) 

where Fa is a linear functional of (S~1—ZS0~
1) with the 

property 
tJFa = {S^-ZS^)-{S^-ZS^) 

==o:a[r,s]. (i.i2) 
Using (1.11), 

Ta=YaA+Ka-Fa=Ta
A+XabKb[T,S~]. (1.13) 

Equation (1.13) differs11 from Eq. (1.3) in having as its 
"inhomogeneous" term TA in place of ZT0a. Equation 
(1.13) together with Eq. (1.8), viz., 

S-^Z{yp~m,)+taKa[Y,S-]\y^m (1.14) 

now replace Eqs. (LI) and (1.3) of the Dyson-Schwinger 
set.12 

To solve (1.13) and (1.14) we use the simple iteration 
scheme suggested in paper I. This scheme is based on 
taking the inhomogeneous term TA[5] of Eq. (1.13) as 
the first approximation r (0) to T. This will be called 
the "gauge approximation1' in subsequent work. 

The "gauge approximation" has the merit of de­
coupling (1.13) and (1.14). Explicitly, define 

ISMJr^ZMiyp-m) 
+taKa[Y^\S^-]\y.p^m (LIS) 

and18 

ra(^)=r/[5^]+xa&ir&[r^^^)], (i.i6) 
where 

rco)=r^[5^] (i.i7) 
and 5 (0) is a solution of the equation 

[SWJ-l = Z«>\yp-m) 
+taKalT«>\SM']\y.p^m. (1.18) 

Clearly S, r=limw^oo Sin\ T(w), provided the sequences 
5 ( n ) and T(n) converge to a limit. 

To see the decoupling of (1.13) and (1.14), it is suffi­
cient to remark that r^QS] is a functional of 5 alone, 
so that Eq. (1.18) is an equation for just one unknown Si0). 
Once 5 (0), and therefore Z(0) and r(0), have been deter­
mined, one simply writes down T(1) from (1.16). At each 

11 To take a concrete example, for scalar electrodynamics one 
may choose 

Fa^^^LS-^-s-KP'^-zip+p'). 

Clearly Xah=gab- (p+p')ah/(p2-p'2); note taXab=0. 
| 12 If Ka has the form f - • -SYaS' • • •, the corresponding expres­
sion for taKa would contain f • • • (Sf—S) • • • in the equation for 
S~K In other words, in writing down the expression for taKa in 
Eq. (1.14) one makes consistent use of the Ward-Takahashi 
identity. 

13 One may perhaps stress once again the close analogy of the 
above approximation procedure to that followed by perturbation 
theory. Perturbation theory starts with the first approximation 
r(°) = r 0 where r 0 by definition equals r A [S 0 ] . Since taXabKb=0 
and O V C S ^ ^ ^ - S ' ^ ^ E q . (1.16) satisfies the Ward-
Takahashi identity to each order in e2 of the iteration. 
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subsequent iteration stage there is again just one equa­
tion [Eq. (1.15)] to be solved for 5 ( n ) , T(n+1) being 
determined by substitutions in Eq. (1.16). This makes 
the method fairly practical.14 

In terms of TA and the gauge approximation, we can 
now restate the stability criterion. It is easy to see from 
the structure of the kernel15 K in Eq. (1.13) that if 
TA[S2 satisfies 

STAlS2Dl/*=0(l/k*), (1.19) 
then 

r<»+i)=o(r^[s^>]). (1.20) 

To see this, we remark that K, in general, has the form 
[see (1.5) with £ 7 = 1 , E e =2] £ r fT(STDl/2Y(d"kY/2 

so that any iteration solution of (1.16) which starts with 
T~ TA and with (STAD1/2)«1/k2 will always reproduce 
a T satisfying T^O(TA). 

Equation (1.20) therefore not only gives us a justifica­
tion for the iteration scheme set up in (1.16), it allows 
us also to replace the stability criterion (1.6) by the 
much simpler relation (1.19). Assuming for the moment 
D~D0=O(l/k2), (1.19) reduces still further to read 

STAlST]=0(l/k). (1.21) 

In this final form, the stability criterion is providing a 
high-energy boundary condition for just one Green's 
function, i.e., the meson propagator S alone. The crux 
of the whole problem of solving in finite terms an entire 
(gauge-invariant) field theory in our new approxima­
tion scheme is therefore reduced to the following: Is 
there a choice of rA[.S] for which one single equation 
S~1 = ZSo~1+taKa[TA,S~] possesses a solution satisfying 
(1.21)? 

For gauge theories one may even anticipate the 
answer. Since Ward's identity "roughly" states that 
TA^S~l/k it would seem that (1.21) is always satisfied 
and electrodynamics of charged particles (of any spin 
whatever) is intrinsically divergence free. The mistake 
in the past has been taking as the starting approxima­
tion TA= To and A= A0 which do not satisfy (1.21). All 
we shall do in this paper is to try to choose a different 
TA[5] for which (1.21) is automatically true. 

14 A still more practical iteration procedure can be set up as 
follows: Define 

iVn+1> -ra^[s<n>]+xa6ir6[r<n>,sw], 
where r<°> = r^QS«»], 5<°>=5<». To start off the iteration, S<°> is 
the solution of the equation 

This iteration has the additional merit that the above equation is 
the only one which needs to be solved. All higher orders are given 
by substitutions in the orders below. 

15 The integrals which arise when (1.14) is iterated with TA as 
the zeroth approximation have the general form given by (1.5) 
with Ee = 2, Ey = 1, so that r = 0 [ r 4 ] . The situation here is similar 
to the case of renormalizable theories where a straightforward 
iteration of (L1)-(L3) shows that if S0r0A)1/2=0[l/&2], then 
STD1'2 is also 0[ l /£ 2] and r is 0 [ r 0 ] . 

The discussion above may appear highly complicated 
As we shall see in Part II, Sec. 1, in practice, the pro­
cedures are rather simple. Summarizing the contents of 
this section, we have used Ward's identity to provide a 
first approximation T^QS] to the full vertex function T 
which depends only on the meson propagator. In 
specifying TA there is a degree of arbitrariness; we 
exploit this to choose r^QS] in such a manner that (if at 
all possible) 6TA[6,] = 0 (1 /^ ) , / ^ all directions in (p,pf) 
plane where S is the solution of S~1(p) = ZSo~l+taKa 

XpM[S],S]. If such S and r A [ 5 ] do exist, the struc­
ture of the equation for the full-vertex function T 
already guarantees that for high energies the full T and 
TA behave similarly. In this sense TA is a good approxi­
mation to T. The entire question of the finiteness of a 
theory is thus made to depend, in this approximation 
scheme, on the possibility of solving just one equation 
—the equation for the two-particle Green's function— 
with the boundary condition stated above. 

C. The Unitarity Set and the Equations 
for S and D 

The end result of the discussion above is to make the 
high-energy behavior of the charged particle propagator 
•S—and possibly also of the photon propagator D in 
case TA is chosen to be a functional of both16 S and D— 
the pivotal questions for a discussion of the finiteness of a 
theory. Now the Dyson-Schwinger equations for S and 
D even for the simplest choice of TA, i.e., 

(P + P')a TVL = (3u.1_.y-!) (L22) 

P2-fi'2 

and even for the simplest approximation to the kernel 
K still present a horribly nonlinear aspect (see Part III, 
Sec. 3 where the equation for 5 is written out in full). 
To expect that one can solve these equations using the 
mathematical theory of integral equations as well as 
guarantee that at the same time one can preserve the 
physical properties of the theory—like unitarity and 
causality—is to ask for miracles. 

That these physical properties are of crucial import­
ance for a correct estimation of high-energy behavior 
cannot be stressed too strongly. It is perfectly possible 
to find approximate solutions to the Dyson-Schwinger 
equations for S and D which show highly convergent 
behavior17 but which were obtained for example by 

16 Equation (1.2) for the photon propagator can be included in 
the iteration scheme thus: DW~l=ZzWD<rl+(fT(n\D(n\SW) 
with Z> = lim„ +00 D^n\ This means that TA should be chosen (see 
Part III , Sec. IB) to depend explicitly not only on S, but also on D. 
At each iteration stage one then solves two equations, one for S 
and one for D. In practice, using the procedure of footnote 14, it 
will always suffice to solve altogether two equations and no more. 

17 See for example Ning Hu, Phys. Rev. 80, 1109 (1950), where 
the expression for 6* obtained as an approximate solution to 
Dyson's Eq. (LI) contradicts Lehmann's result. The only hope 
of renormalizing an unrenormalizable theory (with positive 
definite metric) is through an improved high-energy behavior of 
T, and not S. 

3u.1_.y-
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sacrificing the positive defmiteness which comes by 
considering unitarity properly. 

Now field theory has unfortunately not progressed 
to the extent that one can write down for any Green's 
function a (spectral) expression exhibiting the con­
sequences of causality, unitarity and crossing. But just 
for the case of the two-point functions a complete 
spectral representation does exist and we would like to 
exploit this representation to estimate the crucial high-
energy behavior of S and D in conjunction with the 
gauge-technique described above. 

The following is a summary of the known results. By 
considering the momentum transform of (01 ̂  10) (for 
simplicity of writing the formulas assume a scalar 
electron) 

I m S ^ - S 
: / 

T8+8+T* 

+ JMih+b+b+Mi*+-
•I' 

\S*, (1.23) 

where (1) 5± stands for mass shell wave functions like 
6(±po)5(p2—rn2), (2) Mi, M&, etc. are the contributions 
from <0|^|3), (0 |^ |4 ) , • • • and (3) ReS(^2) is recovered 
from Im5(^2) by the standard Lehmann-Kallen dis­
persion relation. I t is this dispersion relation which sets 
a powerful (minimal) limit to the high-energy behavior 
of S; for a theory with positive definite metric it states 
that S must be at least as divergent at infinity as So. 

The manner in which we propose to use (1.23) is as 
follows: The right-hand side of (1.23) contains T on the 
mass shell for two particles as well as the four and higher 
point Green's functions I f 4, If5, • • •. For r (on the 
mass shell of two of the external momenta), one can 
likewise write the following unitarity relation: 

ImF(*) = Re| 
: / 

F8+5+Mi 

+ / ,5Jf4&f&fM rB*+---l| 

)=lm| JFM+^VM---- 1 

(1.24) 

Here 

F(s)=Fl(p+qy-] 
= (0\j(x)\p,q)P^^=S(s)T(s) (I.25) 

and Re F(s) is related to Im F(s) by a dispersion rela­
tion. Using (1.24), (1.23) can be reduced to read 

5=5[Af4 ,Af5,---]- (1-26) 

At this stage, not having dispersion relations like 

(1.23), (1.24) for M4, i f 5, • • *18 we must use the Dyson-
Schwinger formalism to express the M's as functional 
of S, D, and I \ Our final procedure will then be the 
following: 

(1) Use the Ward-Takahashi identity to define 

(2) Write (1.26) with M4, M5, • • • expressed as known 
functionals of S, D and V. Approximate r = r A [ S ] in 
the integral relation (1.26) for S. 

(3) If a solution to (1.26) exists satisfying the self-
consistent boundary condition D1/2STA[S~}=0(l/k2)> 
the theory is finite and renormalizable. 

(4) The full F (on two-particle mass shell), computed 
from (1.24) by a straightforward iteration, will behave 
similarly to TA at high energies. To see the force of this 
last remark, note that the arguments of Sec. I. IB re­
garding the behavior of the integrals concerned apply 
equally to (1.24). This is because the dependence on 
external momenta (p) of unitarity integrals like 
J*F(p,k)- • '8+(k2—m2)dAk is (in general) similar to that 
of integrals like fF(p,k)- -dAk/(k2-m2+ie). 

Summarizing: Whereas the stability criterion derived 
by considering Green's functions other than S, D, and T 
gives a general boundary condition on a product of S, D> 
and T, the spectral representations of S and D give 
additional information about the minimal high-energy 
behavior of S and D themselves. This information com­
bined with the stability criterion sharpens the require­
ments on the initial choice of YA[S,D~]. 

In Part I I we shall write down in detail Eqs. (1.23), 
(1.24), and (1.26) for scalar and vector electro-

18 To appreciate the problems involved in writing a general 
unitary set, consider the Wightman (W) and the time-ordered 
(r) products: 

^n=(o|^(x1)...^(xn)|o), r„=(o|r(^(x1)...^(xn))|o>, 
with the definition 

r„= S 6(kXil-XiMXi1-Xt}...W{XilJCw.). 
perm 

Using the completeness relation 

Wn= <0| <p(X0 |in><in| <P(X2) (out), 

and the reduction formula 

<out| <p(x) | in)=^iiT a . • • (0\TMx)<p(xi)<pto)• • •) |0>, 

where K— (d2-f-w2), we may write 

r„=20(X t . 1 -X i 2 ) . . . n (K)rTr¥i(XilfV)A+ 
n blocks 

This last set will be called the Unitarity Set. One could, in principle, 
completely replace the Dyson-Schwinger set by this unitarity 
set, but to make any use of it one must learn to approximate to it, 
consistently with the general principles of field theory. The 
simplest suggestion (analogous to perturbation theory) of approxi­
mating to r«, is to retain on the right only two (or three, or four 
• • •) particle intermediate states (i.e. keep only T2, TS, or T2, T3, and 
T4, etc. on the right). This idea however comes to grief on account 
of the presence of the 6{x) factors. In general it is not clear that 
even the Lorentz invariance of the T products would be preserved 
with this type of unitarity approximation and it is at this stage 
that use of something analogous to local commutativity becomes 
necessary. 
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FIG. 1. The vertex function. 

dynamics,19 in a two-particle unitarity approximation. 
In Part III of the paper these equations will be solved 
and the general statements (3) and (4) above will be 
explicitly verified. In Part IV we shall indicate how one 
might set up a practical calculational scheme, consider 
its gauge covariance and indicate how the scheme may, 
in principle, be improved in successive stages to in­
clude higher particle states and also to go beyond the 
approximation of T=TA

r 

Part II 

This part forms the calculational heart of the paper. 
In Sec. 1, we rapidly illustrate the main ideas of the new 
approximation technique which incorporates Ward's 
identity. In Sec. 2 the general spectral representation of 
A and D, and the form factor decomposition of T, are 
written down and the two-particle contributions to ImA 
and ImD are evaluated. (A is the charged meson propa­
gator). In Sec. 3 the same is done for Imr both for 
scalar and vector electrodynamics. We also consider in 
Sec. 3 representations for C parts (two-meson, two-
photon graphs). 

1. THE APPROXIMATION SCHEME 

In this section we illustrate the approximation scheme 
in its barest essentials by computing A, the charged 
meson propagator for spin-zero and spin-one electro­
dynamics. We wish to show in particular how the use 
of Ward's identity improves the convergence of the 
integrals in the theory and start by solving for A and T 
by using the following two exact equations for the basic 
Green's functions (see Fig. 1): 

ImA(p)=-j:n\(0\<p(Q)\n)\> (Il.l) 

taTafap'^ArW-A-W); Pf+t=p. (IL2) 
(Ward-Takahashi identity). 

Equation (II.2) determines the A-dependent part TA 

of T. In this lowest approximation other Green's func­
tions are computed by drawing "irreducible diagrams" 
for these and then by inserting A and TA for the meson 
lines and the vertices. The result is a theory which is 
more convergent than conventional perturbation theory. 

19 I t may be noted that for any gauge except the radiation (i.e., 
Coulomb) gauge, electrodynamics uses an indefinite metric. Thus 
though Lehmann's theorem applies directly to the gauge-inde­
pendent part of D, its use for the charged particle propagator 
needs care. See Part III for a fuller discussion. 

A. Scalar Electrodynamics 

If m is the meson mass, one can introduce a spectral 
representation for &~l(p) in the form 

A-^(p) = (p2-m2)Z(p2) 

Z(p2) = l - / 
J m 

0 {p2-m2)G{x) 

2 p2—x+ie 
•dx. 

(II.3) 

(II.4) 

Define 

Provided that all integrals converge, 

(x—m2)G{x)dx 

Z=linv_^ Z{p2) = 1 - / G(x)d%. (II.5) 

(H.6) 

Since 

A - i ( p ) - A - V ) 

Z(p) = Z-(• 
p2—x-\-u 

[ r (x—mi)zLr{x)dx~\ 
Z+ \ , 

J (x-p*)(x-p'*)J 

Ward's identity gives the exact relation 

<.[r.-rvX), 
where 

TaA=(P+pr. 
r f yx~ (x—m2)2G(x)dx' 

(H.7) 

(II.8) 

(H.9) 
{x-p2){x-pf2)A 

Note that 

Ta
A8+(pf2-m2) = (p+pf)aZ(p2)d+(pf2-m2). (11.10) 

Quite generally T has the form20: 

r a= Ya
A-dah{i)(p+p')hB{p2,p'2f). (ii . i i) 

From PT invariance, B(p2,pf2.t2) is symmetric in p2 and 
p'2 but is otherwise arbitrary. 

Now assuming two-particle unitarity, one can write 
the following equation for ImA: 

I m A = - b+(p2-m2)+k( j r5+S+r*JA* 1 

or more precisely 

-ImA-K/O^ 
ir ( 2 T T ) 3 

Ta(p,p')8+(p'2-ni2) 

Xldah{t)-aeah(t)-}b+(t2)Y^{p,pf)d"pf. (11.12) 

Here [_dab(t) — aeab(t)~]b+(t2) is the absorptive part of the 
free photon propagator in an arbitrary gauge specified 

20 The transverse projection operator dilv{t) = —gliy^rty.tv/t
i and 

the longitudinal projection eflv(t)=tIJ,ty/t2 were introduced in 
Paper I. Writing d and e for these, respectively, note e-e = e, 
d - d = - d , e - d = l, e-d = 0. Also if A=Xid+X2e, then A"1 

=Xr1d+X2-
1e. 
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VV 

FIG. 2. Graph of Z~l(s) versus s. 

by the constant a. Let us now make the first approxima­
tion of our theory and take T=TA [Eq. (II.9)] on the 
right side of (11.12). Using (II.3) and (II.6), and 
evaluating the integral, we get: 

1 a(a-3) (p2+m2) 
- ImZ(p2) = 
IT 2 p 2 

X\Z(p2)\2d(p2~m2) (11.13) 

with a=e2/&7r2. Dividing by \Z(p2)\2, we obtain 
equivalently 

(1/TT) ImZ~\x)^a{3-a)[_{s+M2)/2s~] 

X6{s-rn2))s=p2. (11.14) 

From the well-known analyticity21 properties of the 
propagator and using Z_1(w2) = l, we can write the 
dispersion integral22 (Fig. 2) 

a(3 — a) 
Z-\s) = H (s-m2) 

dx 
(11.15) 

2 J m*x(x~s+ie) 

- l + J a ( a - 3 ) ( l - w 2 A ) 

X [ l n | ( V w 2 ) - l | -iwd(s/m2-l)']. (11.16) 

21 In writing (11.15) we have ignored the part of the integrand 
which gives rise to the usual infrared divergence linv^o ln(ra2/ju2). 
This has no bearing on the high-energy limits of Z~l(s). 

22 Z~x{s) may possess real zeroes (especially when a<3) for 
So/m2<l where 

So/m2 = M3-a)($o/m2-l)Ml-SQ/tn2). 

If a is small, the real zero occurs at So/w2«—e2/a(3~a) and the 
representation of Z(s) must be modified to 

Z(*) = l -
(s—m2) 

a(3-a) (s+e2l«^) 
-(s—m2) 

Jm*S-
G(x)dx 

x-\-ie 
for small a and a<3. This CDD pole in the inverse propagator 
(and therefore in TA) seems innocuous since the combination VAA 
does not contain a pole. (A complete discussion of this point 
should include also the C part CDD poles. We wish to stress here 
only one thing: the appearance of a CDD pole in TA has nothing 
to do with the approximation procedure above. Whenever A has a 
zero, this pole will turn up in TA through the Ward-Takahashi 
identity). It can easily be checked that the pole is innocuous for 
the high-energy behavior of the theory but of course precludes 
expansion around a=0, 

Clearly, 

Z = l i m Z(*) = lim [ m ( V ^ 2 ) ] ~ 1 = 0 (11.17) 

for all a>0 and a ^ 3 . Asymptotically, 

a(a— 3) \n(s/m2) 
A(s)* 

2s 

G(s) = 
ImZ(s) ra(a—3)s 

ir{s—m2) L 2 
-ln; 

( - )]"'• 

(11.18) 

To obtain TA, one may substitute (11.18) in (II.9). Now 
note that the factor [\n(s/m2)2~2 in the expression for 
G(s) acts as a built-in convergence factor for the theory. 
To see this, consider for example the lowest order irre­
ducible diagram for meson-meson scattering as shown 
in Fig. 3. 

Let the mesons ph p2, pz, p* He on their mass shells. 
If meson self-energy insertions corresponding to A and 
vertex insertion TA are made in this diagram, the con­
tribution to the Dyson integrand from the (pi,p2) line 
in Fig. 3, equals T(phu)k(u)T(u,p2). Since [Eq. (11.10)] 
Ta(phu) = (p1+u)Z(u2)\ the net contribution 
from the (php2) line is (p1+u)a(p2+u)bZ(u2)/(u2—m2). 
Thus, Fig. 3 with all its insertions gives 

• / • 

d*uX(u)lZ(u*)J, 

where X(u) is the normal perturbation theory expression 
which behaves like l / # 4 for large u. Since [_Z(u)~]2 

— 0rin~2(w2/m2)], integral / is no longer divergent. Even 
with this simplest of modifications, apparently the need 
for a new subtraction constant to cancel the meson-
meson scattering infinity23 has disappeared and no <p+V2 

type of counter term is necessary. 
I t is perhaps instructive to compare our expressions 

for A and Y with those obtained from perturbation 
theory. The perturbation A may be obtained by sub­
stituting Ta=(p+p')a and A=(p2-m2)-1 on the right-
hand side of (11.12). The resulting expression happens 
to coincide exactly with the one obtained in (11.16). 
This, however, is not the case for V; whereas, in our 
expression for TA the coupling constant a occurs in the 
combinations [ 1 + a ln(s/m2)']~1 and [1+ce ln(s''/rn2)~\~1, 
standard perturbation theory expands these same com-

h 
FIG. 3. Meson-meson 

scattering. 

23 P. T. Matthews, Phil. Mag. 16, 185 (1950). 
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binations in the form 1 —a \x\{slm2) and 1—a ln^'/w2) where 
thereby visibly sacrificing the high-energy convergence .- , - (x—m*)2Gi{x)dx) 
properties of T in order to achieve consistency in the Ta^

A= — (p+p')a\ gpv\Z+ / [ 
power series sense.24 L I J (x— p2)(x— p'2) J 

B. Vector Electrodynamics "P»P»' 

(x—ni2)2G\(x)dx 

~(x-p% 

Q(x)dx 

(x-p2)(x-p,2)J 

+P»gaMp*)+p/gaXp'2) • (H.28) 
The procedure is completely analogous to the spin-

zero case. Here we set down the barest essentials leaving 
to Part III, Sec. 2 the fuller details. With the notation 
of Ref. 2 the general propagator A„, depends on two To evaluate A""1 use as before the equation 
spectral functions (associated with the transverse and 
longitudinal projections dnV and O . Write f A 

ImA-
A - ^ d ^ - w ^ Z i C ^ + e m ^ t e 2 ) , (11.19) 

where 
Noting that 

Gi(x)dx 
Zl{p2)^\-{p2-m2)\ 

J p 2 -

/

G\(x)dx r G2{x)dx 
p2 I 

x J p2—x-\-i 

p*—x-\-ie 

G±(x)dx f G2{x)dx 

p2—x-\-ie 

{p2-m2)2Gy= - (1/3TT) Tr(d ImA"1), 
(H.20) m2p2G2= (1/TT) Tr(e ImA"1), 

we obtain 

(11.12) 

(11.29) 

The wave function renormalization constant Z and the 
bare mass constant are given by the relations 

(11.21) (1A) TmZrKs) 
= [a(s+w2)/24wV]0(s-- m%3a(s+m2)2 

-2(s-m2)2-3(s2+10m2s+mA)'] (11.30) 
and 

Z= lim Zi(#2) = l - / Gi(x)dx, (11.22) 

m0
2Z 

= lim Z2{p2) 
mz J»2->00 

Defining 

and 

/

(jri(x)dx r 
/ G2(x)dx. (11.23) 

(11.24) S(#) = (oc—m2)2Gi(x)/x-\-m2G2(x) 

Q(x)dx 
%{p2)~Z- ' (11.25) 

p2—x-\rie 

one may rewrite (11.19) as 

Av-l(P) = -gr(P2-fn2)Zi(P2)+P*pMp*) • (H.26) 

Since 

A^(p)-A,v~Kpf) 
= -g»l(p*-fn2)Z1(p

2)-(p'2-m2)Z1(p'2n 
+P*P>W2)-KP'2)1 

(1/TT) lmZ2{s) 
= la(s-m2)d(s-m2)/SmAs2'] 

XLSamKs+m2) \Z2{s) \ 2-3{s-3m2) \ Fx(s) \2 

-2{s~m2){2s+m2) Re F^(s)F2(s) 
- (5/4:)(s~m2)2(s+m2) I F2(s) | 2 ] , (11.31) 

where 

Fi(s) = -{s-m2)Zl{s)~m2Z2{s), 
F2(s) = 2Zl(s). (11.32) 

The equation for Z\ is immediately soluble. For large s, 
ImZf1 (s) = 0(s). Thus, 

Zi(s) = 0[_(s Ins)-1! (and Z=0, all a>0) . (11.33) 

From (11.31) and (11.32) 

ImZa-1^) = 0( l+Re[Z 2 - 1 W(M- 1 ] ) 

and the solution has the form 

Z2(s) = 0((lns)-1) (andZm0
2=0). (11.34) 

one can satisfy Ward's identity in the form 
4]=o, 

We shall return to the full discussion of (11.33) and 
(11.34) in Part III, Sec. 2. Here we simply remark that 

+plitvd(p2)+tlipv'd(p/2), (11.27) high energy behavior of type (11.33) and (11.34) is pre­
cisely what was stipulated for Zi(^2) and Z2(p

2) in 
paper I, in order that a "stable" approximation scheme 

(II.8) f° r a n m t e vector electrodynamics can be set up. 
We have not considered in this section the computa-

That the perturbation V must contain terms of the form t ion of the full T. I n P a r t I I I we m a k e this c o m p u t a t i o n 

™,-G^ A^^*.UT u„ ™+ ^ ^ explicitly verify the assertion of Sec. I. IB and I ' ~ 
that T and TA behave similarly for large energies. 

a-a\ns/mp and ( l -« ln,7m2) can be verified directly by writ- a n d explicitly verify the assertion of Sec. I. IB and 1.1C 
mg the perturbation expression tor A 1(s) — A l(s) and checking r

 } -rn i_ 1/ • „ * i i r „ i ~ 
through expHcitly for Ward's identity. ^----^ - -
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2. FORM FACTOR DECOMPOSITION OF T AND TWO 
PARTICLE CONTRIBUTIONS TO A AND D 

In Sec. I I . 1 we set down the spectral representations 
for A and those parts of T which depend directly on D 
through Ward's identity. In Sec. I I . 2, we write down 
the general spectral representation of D, the photon 
propagator, decompose T into form factors and compute 
the two-particle contributions to ImA and ImD. In the 
next section Sec. I I . 3 are written the two-particle con­
tribution to I m l \ We also rectify in Sec. I I . 3 the 
omission so far in not considering C parts (2-meson, 
2-photon graphs) which for spin-zero and spin-one elec­
trodynamics play as crucial a role as the vertex function 
T itself and are in any case necessary for ensuring 
gauge invariance. 

(i) Neutral Vector Meson Propagator D (Massive 
Photon in an Arbitrary Gauge) 

Following Feldman and Matthews25 we write the 
photon propagator in the form 

D-1(0 = dW(^ 2 -M 2 )^3(^ 2 ) -e (0ZW(^-X 2 )A 2 , (H.35) 

where 

Z3(/2) = 1 - / , (11.36) 
J t2—x+ie 

Zz=l— J Gz(x)dx, 

Ho2Zz f Gz(x)dx 

- - / • 

(11.37) 

(11.38) 

Note that in this formalism the absorptive part of the 
free photon propagator equals 

(l/7r)ImDo-K0 = d (0^ 2 - -M 2 ) -XV 2 e ( / )5 + (^ 2 - -X 2 ) . 

(ii) The Vertex Function 

(1) From C and P invariance 

V*{p,P') = W,p)=-Va(--p'9-p), (H.39) 

where transposition ( ^ ) refers to charged meson indices. 
(2) From the Ward-Takahashi identity Ta must have 

the form (true for any arbitrary gauge) 

r a = i v + i y = va
A-dah(t)Bh{t), 

where 

taTa
A = k-l{p)-£r\p') a n d U V = 0 . (H.40) 

Possible forms for Ta
A for scalar and vector mesons were 

displayed in equations (II.9) and (11.28). The properties 
of Ta

B axe listed below: 

A. Scalar Case 

(1) From symmetry considerations 

Bb=(p+p')bB(p2,p'\t2) (H.41) 
with 

B(p2,p'2,t2) = B{p'2,p2f). (11.42) 

(2) The physical requirement that Ta does not exhibit 
a pole at t2=0 implies that 

lim 
*2-»0 f2 

- = finite. (11.43) 

(3) The requirement that the mesons carry unit 
charge imposes the restriction 

Ta(pJp
,)\p*~p»~m>=2pa aS t~+0. 

Thus B(fn2,tn2,t2)->0 for / - » 0 . This condition is in 
fact part of (11.43). 

(4) On the meson-photon mass shell 

ta(p
2-m2) 

Ta(P,pf)=(P+P')aE(p2) IE(P2)-Z(P2)1, 
M2 

where 
E(p2) = Z(p2)+B(p2,mV). (11.44) 

For /x2 —> 0 write 

E(p2)-Z{p2) B(p2,m2^2) 
lim — — = lim =E'(p*). (11.45) 
M 2 - O M 2 

Thus, 

T a ^ O l p ' W V - O 

= {p+p')aZ{p2)-ta{p2-rn2)E'{p2). (11.46) 

On the two-meson mass shell 

P a ( ^ ' ) | p W 2 = m 2 

= (p+p')all+B(in2,fn2,t2)-}= (p+p')a8(t2). (11.47) 

This last equation defines electric form factor S(t2). 

25 G. Feldman and P. T. Matthews, Phys. Rev. 130, 1623 
(1963). In this formulation of electrodynamics, X2 is introduced 
with the significance of the mass of a "time-like" photon whose 
polarization is always along the propagation direction ^ . Current w j t h 
conservation guarantees that the mass shell *S-matrix elements 

B. Vector Case 

The general expression for YaixV
B is dab(t)BbtiV{p,pf ,t), 

(though of course not the Green's functions) are independent of „ __ fJ%_\_u\ rz? _i z? J, I T ? / I T? J, _L_ T? I 
X2. The constant X2 specifies a particular covariant gauge: ^b^— \p~Tp )b\J5ig^&2pvh'rmtvpv ^-Btpppv'-+-&&&_} 

+ (gbvtn— gbntv)B^-\-{ghvtli-^-ghlltv)B'j 
+gbvpnBs+gbllpv'Bs. (11.48) 

X2. 
a — X2/fx2 = 0 defines the Landau gauge, and a = X2/ju2 = l defines 
the Fermi-Stuckelberg gauge. For X2//*2 —* <*> one recovers con 
ventional theory of massive neutral vector mesons. 

file:///p~Tp
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Thus, 
(x—m2)2Gi(x)dx &i{x)dx'l 

x-j>'2)\ 

A. Scalar Electrodynamics 

(1) Photon self-energy. 

/

G(IT lfl /Y* 

-———-i(p+p%p*p;+(x-p2)g«?p; 
(x-tfMx-fi'*) 

(11.50) 

(x-fXx-p'*). 
<§{x)dx 

+ (x-p'2)gavp^+dab(t)Bh,v(p,p'). (11.49) 

(1) The symmetry properties are 

5l t4 (5 l6(?W2) = 5ii4i6ie(^,,rfV2), 

ZM^V)=-WW2), 

5«..(#W)=-5, i ,(# /^V). 
Clearly only seven of the nine Bi are independent. 

(2) In order that Tailv have no pole at t2=0, 

limBif4= (p2-pf2)B2,z+B8,g 

= (^2-^2)^5+2JB7=0. (11.51) 

(3) Contracting out on the polarization vectors of 
one meson [i.e., Tait»(p,p')dvp>(p')'}, we get 

Bbr(P,P')-*(P+P')b 
X [B1gliv+B2plltJ,+B5ttltv']+ (gbvtp—gbnQBs 

+ (gbvtli+gbfitv)B>t+gbj,pliB8, (11.52) 
so that just six form factors remain. Contracted out on 
the second meson polarization vector, only three form 
factors survive: 

^ p ^ ) r a p a ( ^ o ^ ( ^ 0 = ^ p ^ ) [ ( ^ + ^ ) a ( - g p ^ + y ^ ) 
+ (gaPt<r-gaatp)WqdffV(p'), ( H . 5 3 ) 

with 
<S(/2) = l+^i(w2 ,mV2), 

$jp) = - B,(m2
}m

2
yt

2), (11.54) 

m(t2) = B6(m
2
)m

2
)t

2). 
We shall call <§, 2ftl, and j£ the electric, magnetic and 
quadrupole form factors (though the designation is not 
strictly correct in the last case). These must be gauge 
invariant just like S in the scalar case. In the static 
limit, we obtain 

5(0) = 1 (unit charge), 

9TC(0) = K (magnetic moment in units of e/2m), 

£(0) = (2/m2) (q+K-1) (q is the quadrupole 
moment in units of e/m2). (11.55) 

(iii) The 2-Particle Contributions to D and A; 
General Expressions 

In our calculations, the 2-particle contributions will 
play a crucial testing role. These are computed in this 
section with completely general spectral functions of 
Part II, Sec. 1 for scalar and vector electrodynamics. 

-ImDOb"1(0 = 
T (2TT)! / 

d*pTa(p,p') 

Xh{p2~m2)b+{p,2-m2)Y^{p,p'). 

In terms of the spectral function for D~l and the form 
factor of T this reduces to 

Gz{t
2) = [_at2/6{t2-ix

2)2'] 
X(l~4w2A2)3/2 | <S(*2)|20(/2-4w2) (11.56) 

with S(t2) defined in (11.47). 
(2) Meson self-energy. This has been computed be­

fore in Sec. 1A for /z=0 and T = TA. For the general case 
it is convenient to separate the photon mass-shell con­
tributions into two parts; one part coming from the 
Fermi gauge — gab?>+(t2—M2)> and the second coming from 
the remaining terms (/a/&//x2)[5+(/

2—p2) — 5+(^
2—A2)], in 

the photon propagator. Thus, 

(l/«r) lmA(p) = *(t)ZX(p*)+Y(p*)lW), 

where the gauge-dependent contribution Y(p2) equals 

e2 r 
Y(p2)= / (tava)8+(pf2-m2)(tbvb*) 

(2TT)3 J 

1 
X-lh(t2-ix2)-d+(t2-a»2)-]dH 

M2 

= [a(£2-m2)2 /2^V] | Z(p2) |2 

X [ ^ ( M 2 ) ~ ^ ( ^ 2 ) ] . (H.57) 

Here <p(n2) is the quantity which arises naturally in 
evaluating the phase space integral 

/ 
dHS+iP-^S+Kp-ty-m*] 

x.pGu2) 
= — 0 [ > 2 - O + M ) 2 ] 

7T 

2£2 2^2 

X [ ( ^ 2 - W 2 - M
2 ) 2 - 4 W V 2 ] 1 / 2 . (H.58) 

Indeed the result with /x=w has already been used in 
(111.56).] The Fermi gauge contribution, X(p2)7 to 
ImA(^) equals 

a<p(fx2)r 
X(p2)= (2^2+2m2-M2)l^(^2)l2 

2^2 L 
(p2—m2y 

{\E(p*)\*-\Z(p*)\*}\ (11.59) 

with E(p2) defined in (11.44). All in all then, 

<*|Z(^2)|2 X(p>) 
GW= . : . w ) - vwn+——-. (H.60) 

2p*p* (pt-mP-y1 
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I t is worth remarking that for a —»°o (i.e., no time-like The total number of unknowns appearing in the equa-
photons in intermediate states) ^(aju2) = 0 and G is tions for A and D equals four [G(p2), G$(t2), E(p2), and 
positive definite as indeed it should be. In the limit as &(t2)~]. Thus besides the two equations for G and G3 we 
/x2 —> 0 (11.60) gives need two more. These are provided by writing the two-

particle approximation to T using (1.24) and are set 
G(p2) = ad(p2-m2)l(a-3)(p2+m2)/(p2-m2) out in Sec. 3. 

X \Z(p2) 12+2(p2-m2) ReZ*(p2)E'(p2)l/2p2 (11.61) 

with Ef(p2) defined in (11.45). 
B. Vector Electrodynamics 

(1) Photon self-energy. From the equation 

(t2-ix2)2Gz{t2)^ ~dah{t) [d±pTa,p(p,p')d,v{p)d 
3(27r)3 J 

we arrive at26 

G,(t2)-
<xt2 / 4w2 \3 / 2 

( 1 1 d(t2~4m2) 
(t2-fi2)A 24mHt2-u2)2\ t2 I 

X[( / 4 -4w 2 / 2 +12m 4 ) | <S(/2) |2-2/2(/2-2w2) ReS*(t2)m,(t2)'~t2(t2--2m2)(t2-~4:m2) Re<S*(*2)^2) 

+ / 2 ( / 2 +4m 2 ) | 3 n ( ^ 2 ) | 2 + ^ 2 - 4 w 2 ) R e m * ( / 2 ) ^ ( / 2 ) + / 4 ( / 2 - 4 m 2 ) 2 | ^ 2 ) | 2 ] (11.62) 

with the form factors 9fll, <§, and Q defined in (11.54). 
(2) Meson self energy. A rather lengthy evaluation gives the following general expressions: 

G I ( P 2 ) -
2pY 

«>V) ?V)> 
3+ <p{a^) | Z1(p

2) 12+- 3+ E(p 
\ 4m2p21 (p2-m2)A\ 4m2W 4m2p 4m2p2 

OP 

/ xW+W 2 -M 2 ) ( £ 2 + W 2 - M 2 ) < ? V ) M
2* 

• ReE*(p2)M(p2)+- -r-7-n ReE*(p2)Q(p2)+ ' / Re<2*G»2)lf(^>2) 
MVO*2) 

2m2p2 

(p2-m2)(ix2-p2-m2) 

2m2p2 

(p2-m2)2v2{n2) 

km2p2 Am2p2 

Zix\p2~m2) fi2(2p2+2m2-fi2) 
ReE*(p2)N(p2)+———— Relf*G>>2)A^2)+ —— ~\M(p2) |2 

ReQ*(#W)-

2m2p2 Am2p2 

with 
4ra2^2 16m2p2 

E(p2) = Z1(p
2)+B1(p

2,mW), 

Q(p2)=-B5(p
2,m2,v2), 

M{p2)^B,{p2,m2^2), 

N(p2) = Bi(p2,m2,»2). 

Equation (11.64) is analogous to the scalar counterpart (11.65). Further, 

m2ipz{a\x2) 

(p2-m2)2+2u,2(p2+m2) 
\Q{f)V+~ ~—^~ -W)l2 

4m2/>2 
(11.63) 

(11.64) 

(11.65) 

(11.66) 

(11.67) 

W)=- 2m2p% \ix2 
\Z2(P2)\2+M 

X 
V *>V)\ <?V) , (p2-ix2-m2)ip2{ix2) 
( 3+ | F1(p

2) 12+ 1 F2(p
2) 12+ ReF^(p2)F2(p

2) 
\ 4W2M2 / A ' " " 

16m2 fx2 
4m2fjL2 

(11.68) 

26 That G3 in (11.62) is indeed positive definite can be seen by de fining in place of ̂  the combination 

in which case (11.62) simplifies to 

^ ( ^ = 3 ( ^ ( 1 - ^ ) '[ | 6WI'+^|3ttW|'+J|xW|']. 
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where 

Hp2) = -(^-^Z^-w^C^+K^ , ,TT An. 
(11.69) 

F2(p
2) = 2E(p2)+2p2B2(p

2,m2
)fx

2)-(p2-m2+fi2)Q(p2)+ 

In the limit /J2 —» 0 as noted in (11.51), E, (J, M are nonzero. Other form factors Bh J54—> 0. Also in this limit, 
E(p2) -> Z1(p

2), F,(p2) -> - (f-nWLZi(P)-hM(P)l-fn*Z*(f), W ) -> 2Zl(p
2)-M(p2). Writing 

l i m C W / M ^ e ' e t c . and £ ' ( ^ ) = a £ ( ^ W | , ^ , (H.70) 
M2-*0 

We have adopted here the stronger form of (11.51) in which every Bi —> 0 as ju2-^ 0, except i=6. This makes no 
essential difference to (11.71) and (11.72) but simplifies the expressions considerably. 

aQ(p2-m2) /Sa(p2+m2y (p2+m2) 
Gtip2) = ( 1 Zx(p

2) | 2 I5(p2~m2)2+36m2p221 Zx(p
2) |2 

24w2^4 \ p2-m2 p2-m2 

+2(p2-M2)[(p2-m2)2+12m2p22ReZ1*(p2)E^ 

-2(p2-m2)2(p2+m2) ReZ1*(p2)N/(p2)+2(p2-m2){p2+m2)[_RtZ^{p2)M(p2)+ \M(p2) | 2 ] J , (11.71) 

a(#2—m2) 6(p2—w2) 
G2{p2) = {3am"(p2+m2) | Z2(p

2) \ 2~3(p2-3m2) \Fx{p2) \ 2+2(p2-m2)2 ReF^ip^F^p2) 

-2(p2-m2)(2p2+m
2)ReF1*(p2)F2(p

2)+(p2-m2)z^ 

- (S/4:)(p2-m2)2(p2+m2) |F2(p
2) | 2 + § ( ^ 2 - M 2 ) 4 ReF2*(p2)F2'(p

2)}. (H.72) 

The total number of unknowns for vector electro- duce as follows: 
dynamics in the limit a2—-> 0 is 12, f ^ , „ v 

I m T - R e / T5+8+Ma)*, (11.76) 
Gi, G2, G8, W , <§(/2), J f (#2), 3T^2), J 

Q(p2),m,N(p2),B2(p
2),Bs(p

2). r 

o=im rM+^(»*. (IL77) 
Besides the three equations for A and D we need nine J 
more equations (from the two-particle approximations 
to the vertex function) to make a complete set. To see the character of these functions, assume all 

amplitudes are scalar functions. Equations (11.76) and 
3. VERTEX FUNCTION IN THE TWO-PARTICLE AP- ( I L 7 7 ) a r e equivalent to the (two-particle) unitarity 

PROXIMATION AND C-PARTS (TWO-MESON, condition on Afa): 
TWO-PHOTON PROCESSES) 

The Basic Equation Im / 8+8+Ma)*+ 

By considering 
and the equation 

5+5+Ma)* = 0 , (11.78) 

( 0 | i ( 0 ) | M ) i n = ( 0 I i ( 0 ) | 2)out out(2 I M ) i n 

Im / S+M^cu* 
and using FT mvanance, we get I m r J 

tan0= = . (IL79) 
C R e r r 

Im(A(s)T(s)) = Re / A(s) r (*)M+4^*to , (11.73) Re / M + ^ ( D * 

0 = l m / A ( s ) r ( s ) M ^ * f r ) ; * = = ( # + £ ) 2 - (11.74) This is the homogeneous Riemann-Hilbert equation 

One may extract from M the one-particle reducible N NV^"~"X/ \ / ?^~^\ 
parts in the ^-channel, thus writing (Fig. 4) s f M ] - ( V — f ) +• ( M J 

M=Ma)+T(s)A(s)T(s). (11.75) X-^\ X / ^ \ 

Using ImA = f | AY 128+8+, Eqs. (11.73) and (11.74) re- FIG. 4. The one-particle irreducible scattering. 
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FIG. 5. Basic triangle graph for the vertex equation. 

which has been extensively studied by Muskhelishvili27 

and Omnes27 and has the solution 

where 

X(Y) = exp 

T(s)^cX(s)J 

ri r o(x)dx-

L T T 7 _ ^ X—S J 

(11.80) 

(11.81) 

The^inclusion of three- and higher particle states con­
verts (11.79) essentially to the inhomogeneous form 

Imr = tan0Rer+Z7(*) , 

which has the solution 

r l 
c+-

IT 

U(x)dx 
\X(s). 

(11.82) 

(11.83) 

FIG. 6. Diagrammatic interpretation of the gauge 
identity for proper Compton scattering. 

A. Unphysical Photon 

To make the problem tractable we must approximate 
to M(i). From crossing symmetry for M, MQ) must 
include the one-photon contribution T(k)A(k)T(k). (See 
Fig. 5.) This contribution, by itself, however, does not 
satisfy unitarity; in fact for the relevant values of k2 

(i.e., k2<0), I f (i) is purely real and thus needs to be 
supplemented by further terms. These are given by 
(11.78). Neglecting | ImM ( i ) | 2 compared to I m ¥ ( D 
unitarity gives ImMa)= — [ReAT(i)]2. With ReM(D 
= TAT in this approximation we finally obtain28 

(x—s)X(x). 

(i) Scalar Electrodynamics 

We will now consider the two cases: 

A. F for the unphysical photon ( / 2 ^0, p2 = p/2 = ni2)y 

B. F for the unphysical meson (p29^ni2,p'2=nt2
Jt

2 = 0). 

tan<9= / M + r A r . (11.84) 

Using the phase-space integrals listed in the Appendix, 
this works out as 

tsmd(t2) = -

2 -4m 2 ) 

l^-^mH2)1'2 J^-i 
dk2-

(^m2-t2-2k2) (2t2+k2-4:m2) 

^m2-i 
-^(jyQZrK 2 ) : (11.85) 

where S(k2) and Zf1(k2) are real for the integration range of k2. 
Collecting all the relevant equations in the two particle approximation with the photon unphysical, the propa­

gator and vertex function equations are 

•XmZ3(*
2> 

6\ 

4w2v3/2 

J 0(t2-^m2)\8(t2)\2, 
t2 

1 a6(t2-^m2)ReS(t2) 
- Im8(t2) = 
7T 2 ( * 4 - 4 m 2 / 2 ) 1 / 2 

with the boundary conditions Z3(0)= 8(0) = 1. 

dk2 
(4ni2-t2-2k2) (2 / 2 +£ 2 -4m 2 ) 

Ani2-t2 
-82(k2)ZrKk2), 

(11.86) 

(11.87) 

B. The Unphysical Meson and Consideration of C Parts 

The calculation is similar to the above. I t is more complicated insofar as gauge invariance demands a proper 
treatment of two-meson two-photon (C-part) contributions which are involved in the intermediate states. Some 
remarks about the C parts are therefore needed: 

27 N. Muskhelishvili, Singular Integral Equations (P. Noordhof Ltd., Groningen, The Netherlands, 1946), p. 111. The solution in the 
text is the so-called "fundamental solution"; it is the solution which applies when the change in the argument equals zero when x goes 
from ~oo to + oo. When this argument change is nonzero, the constant C in (111.80) is replaced by a polynomial. The high-energy 
behavior of r is thus determined by the phase shift \j)~]-% of the scattering amplitude and therefore (through Levinson's theorem) by 
the number of possible bound states and CDD poles. A detailed discussion of this will be published elsewhere. See also, R. Omnes, Nuovo 
Cimento 8, 316 (1958). 

28 In writing this we have the familiar dilemma of S-matrix theory; how to reconcile within one {approximate) expression, the demands 
of causality, crossing, and unitarity. Thus absolutely strict (2-particle) unitarity has been sacrificed in MQ.) by not including terms of 
the form y*(rAr)AA(rAr). 
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If Cab(p,p'; k,k') stands for a proper Compton scattering graph (i.e., one-rneson irreducible graph) it is easy to 
show that29 

KC*h{psp'\ k,k') = Th(p+k, pf)-Th{p, p'-k), (11.88) 

kb
fCab(p,p'; k,k') = Ta(p, p+k)-Ta(p

f-k, pf). (11.89) 

These identities can be represented diagrammatically as shown in Fig. 6. 
The symmetries obtained by C and P invariance are 

Cal>{p,p'\k,k') = Ca}>(-p', -p',W) = Cabty,p\ ~K -k') = CUp'>P\V ,k) . (11.90) 

Similarly to the vertex function, we may define a "gauge covariant" separation 

Cab = Cab
A+Cab

B where k«Cab
B = k,bCab

B = 0. (11.91) 

Now r itself consists of two parts, TA and the purely transverse part TB [see (11.40)]. Thus CA (kCA=T — Y) 
itself consists of CAA terms (kCAA=TA-TA) and CAB terms (kCAB=TB-TB). Now, 

(p+k+p')b (p+p'~k)b 
Tb

A(p+k, p')-Th
A(p, p'-k) = 2kbZ+ j dx(x-m2)2G(x) 

so that we may write 
Xx-p'2)tx~(p+k)2i (x-p2)[x-(pf-ky~]-i 

r dx(x—m2)2G(x)Nab(p,p'; k,k'; x) 
Cab

AA(p,p'; k,k') = 2gabZ+ , (11.92) 
J lx-{p+k)2^{x-p2){x-pf2)lx-{pf-k)2-] 

where 
Nab{p,pf)k^-x)^2gab{x-p2){x-pf2) + l{p+p%ka

f-{p+ 
-l(p+p')a(p+p'h-kbka'Jp2+pf2-2x). (11.93) 

Similarly, from TB— TB we may write 

r U 
Cab

AB(p,p'; k,k') = -dae(k)[<J>+p')e—{B\j*, (p'+k')\ k*-]-Bl(p-kfy, p'2, k2-]} ti2 

+g*{B[j>\ (p'+k')*, k*]+Bl(p-k'y, p'\ /e2]} ip+P%{B\lp+k)\p'\k'*] 
.k2 

-B[_p\ (pf-k)2, k'21}+gac{Bt(p+k)2, p'2, k'^+Btp2, (p'-k)\ £'2]} dcb{k'). (11.94) 

The expressions (IL92)-(IL94) for C possess all the requisite symmetry properties30 and together give the T-de-
pendent part of C. It is this part whose inclusion in any calculation is necessary to preserve gauge invariance. 

We can now return to the discussion of the vertex function with the meson unphysical. At the outset we set the 
photon mass zero so that 

Ta(p,p') | ,, w.«>-o= (p+p')aZ(p>)-(p*-m*)(p-p%E'(p*). 
Clearly, 

{p-p')aYa{p,p')^(p2-m
2)Z(p2) = A-Kp) and (p+pf)aTa(pyp

,) = 2(p2+m2)Z(p2)-(p2-m2)2Ef(p2). 

Approximate to M^) in (11.76) by the gauge covariant combination31 

Ma) = TAATA+CAA, 

29 K.Nishijima, Phys. Rev. 119, 485 (1960); T. D. Lee, Phys. Rev. 128, 899 (1962). 
30 It is perhaps instructive to write the spectral form for CAA in Mandelstam variables s= (p+k)2, u— (p'—k)2. 

CabAA{p,P ,k,k ) (mass shells = Z g 0 & Z + / dX—( r-; 

with 
x—u) 

Nab(s,u; x) = 2gab(x-m2y+2Z(p+p,)a(p+p')b-kbka'l(x-m2). 
Using the identities, 

f (x~m2)2G(x)dx_A~1(s)~A-1(u) f (x-m2)G(x)dx^Z(s)-Z(u) 
J (x—s)(x—u) s—u ' J (x—s)(x—u) s—u ' 

this may be more simply expressed as 

c.^(J,«t)-^{A"i^:fW]+2[(»+^.(»+^>-*^]{^EfM} 
31 M (i) is approximate in the sense that TB and the intrinsic spectral functions of C are not taken into account in writing M(i). 
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we obtain (after a lengthy calculation) for the vertex function, 

f^{p2+m2)2 9p4+5p2q2+3m2q2+9m2p2+6m^ 

p2—m2 p2—q2 

1 ad(p2-m2) rmi/*>2 

-ImE'{p2) = / dtf 
7T 2(p2—m2)3 J2mi-V

% 

/4:(p2+m2)2 9p4+5p2q2+3m2q2+9m2p2+6m\ 
I Z(p2) |2 

\ i)2-m2 j)2-a2 J 

+ReZ(p2)Z*(q2)(- - - - ) . (11.95) 
\ q2—m2 p2—q2 1A 

Equations (11.86), (11.87), (11.95), and (11.61) together with the boundary condition Z(w2) = l complete the set 
of two- and three-point function unitarity equations. Before closing this section, it is as well to be reminded that 
S(t2) and E'(p2) are themselves boundary values of the same function B(p2,p,2,t2), 

B(p2,m2^2) 
<§(/2) = l+5(m2,mV2), and £'(£2)=lim , 

and that the full stability criterion [relation (1.6)] specifies for these the boundary conditions 

lim p2E\p2) and lim &{f) = 0(1). 

(ii) Vector Electrodynamics 

The exact unitarity equations for T are far too long and complicated to write down in full generality, particularly 
with the meson unphysical. This is on account of the large number of form factors involved and the need to include 
the C parts properly for preserving gauge covariance. The problem is slightly more amenable with the photon 
unphysical because here one deals only with three (gauge-independent) form factors 8, 2flX, and j£ as defined in 
Eqs. (11.53) and (11.54), Nevertheless the general expressions for Im<§, Im9fTC, and Im^in terms of 8, 9TC, and j£ 
(given by the one-photon, exchange approximation to M(D as in the scalar case) are still very complicated. We 
shall content ourselves here by stating the unitarity equation for Im.8 (the simplest): 

1 / t2 \ 3 ad(t2-4:m2) r° dk2 

1 Im<^2) = / —Zz-
l{k2)-(t2+2k2-±ni2) 

\ 4:m2J 2 ( / 4 -4w¥) 1 / 2 i 4 m 2 - ^ 2 2(;4-4w2/2)1/2 J\m*-e k2 

X{ReS(t2){(2t2+k2-4,m2)l(h2Iis-hh,)S2(k2)^ 

+4m(&2)£(£2)[/2
2(/2^^ 

+ m 2 (^ 2 ) [2 / 2
2 ( / 2 4~ /5 /6 ) - / 9 (2 / 1 / 1 7 - / 6 / 9 - / i 2 / 5 ) ] } 

-Re i^ 2 ){ (2* 2 +£ 2 -4m 2 )^^ 

+ 4^(£2)<S(&2)[/2
2(^^ 

+ ^ 2 (^ 2 ) [ / 2
2 (2 / 3 / l4 - /6 2 - - /3 2 /5 ) - - /9 (2 / 1 /3 / l l~ / l 2 /6 - /3 2 /9 ) ] } } . (11.96) 

The / 's are simple traces of d(p), d(p')} &(p—k)9 and d(p'-k), and are listed in Appendix II. In the region of large 
t2 we get 

1 a r° 
-ImS(t2)~ / dk2Zz-1(k2)(t2+2k2)(t2+k2) 
7T 32mH8 Js 

X{Re<S(/2){*4(&2+2/2)[-^^ 

+8&4(^2+&2)^(&2)(g(£^ 

-Re£( / 2 ){ / 2 £ 4 (£ 2 +2/^ 

- 4 ^ 2 ( / 2 + £ 2 ) ^ ( & 2 ) ^ (11.97) 

This equation together with two similar ones for ImSflX and Imi£ (which have been worked out) and Eq. (11.62) for 
ImZf1 completes the two-particle unitarity set for D(t) and r(/). 
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Part III 

The two- and three-particle Green's function equa­
tions of Part I I are solved (in the gauge approximation) 
to obtain explicit expressions for D, A and TA in Sec. 1 
for scalar electrodynamics and in Sec. 2 for vector elec­
trodynamics. Also verified by explicit computation is the 
dimensional statement of Part I. IB that the full V 
(in the two-particle unitarity approximation) behaves 
similarly to YA. In Sec. 3 we go back to the Dyson-
Schwinger equation for A and show by actual substitu­
tion that the unitarity solutions of Sees. 1 and 2 satisfy 
this so far as the high-energy behavior is concerned. The 
solutions obtained are stable so that with these as start­
ing approximations, the full theory is divergence free. 

1. THE SOLUTION OF UNITARITY EQUATIONS FOR T , 
D AND A FOR SCALAR ELECTRODYNAMICS 

For scalar electrodynamics we are dealing with a re-
normalizable theory. One solution (the perturbation 
solution) of the equations is well known; it involves (for 
A, T, and D) a total of two subtraction constants 
[Z(w2) = l, Zz(0) — 1~]. In this section we attempt non-
perturbative solutions; these will serve as guides for 
the more complicated case of vector electrodynamics. 
We also find that the photon subtraction Z3(0) = 1 is not 
really necessary. 

A. Meson Equations 

Rewrite the meson propagator equation (11.61) in 
the form 

where 
I m Z - 1 ^ 2 ) = t an 7 ReZ~1(^2)+U(p2) , ( I II . l ) 

Rt[_2a{p2-m2y/p2~]e{p2-m2)E,{p2) 
t any= , (III.2) 

l+Im[_2a(p2-m2)2/p2~]E'(p2) 

a(a-3)(p2+m2)d(p2~m2) 
U(p2)= . (IIL3) 

2p2[l+Im(2a(p2-?n2)2/p2)E'(p2)'] 

The equation for Er{p2) has the form 

lm{p2-m2)Ef{p2) = | Z{p2) 12f(p2), (III.4) 

where for large p2 

f(p2)~ I dxlA(x)+{ReZ-1(p2)^(p2x)}B(x)2 (III.S) 

with 

and 
A(x)=*(9x+S)/(x-l) 

B(x) = (2x3+ 10x 2 - 3x+ l)/x(x-1). 

Note U(p2) = 0 for the special gauge a = 3 . 

Using Muskhelishvili's result (III . l ) has the formal 

solution [subject to one subtraction Z~1(m2) = 1], 

Z~\p2) = X{p2)\ 
r (p2—m2) 

1+ 

X 

where 

dxU(x) 

(x-m2)X(x)(x--p2). 

(p2—m2) 
X(p2) = exp\ 

Also from (III.4) 

{p2-m2)Ef{p2) 

y(x)dx 

(x—p2)(x—m2)-

\Z(k2)\2f(k2)dk 

p2-k2 

, (HI.6) 

(III.7) 

(III.8) 

In writing (III.8) we have assumed that the vertex 
function for scalar electrodynamics needs no extra sub­
traction besides the one at Z{m2) = \. Since f(p2)—> 
const for p2—>coy this assumption is equivalent to 
Z(p2) —> 0 at least as fast as 1/lnp2. We must now show 
that the expression (III.6) for Z(p2) indeed does confirm 
this. 

To see this, note that if (III.8) holds, 

(p2-m*)E'(p*)->0, 

so that U(p2) —> constant and tany(^>2) —> 0. Therefore, 
X(p2) in (III.7) —» constant apart from a possible loga­
rithmic factor. But (whatever this factor) for a?^3, it is 
easy to see that X(p2) times the integral within brackets 
in (III.6) must increase at least as fast as (ln^2).32 This 
is precisely what we set out to show for Z~l(p2) [com­
pare Part I I . 1, Eq. (11.16)]. 

So much for the formal solutions of (III . 1) and (III.4). 
To obtain explicit expressions for Z(p2) and E' one may 
now set up a detailed iteration scheme to solve (III.6) 
and (III.8). A wide variety of schemes are possible de­
pending on what we take as the effective coupling con­
stant; a particularly convenient scheme is to go back 
to Eqs. (11.61) and (11.95) for E' and Z and to start 
with the first iteration T = T A [ A ] , (YA defined in Part 
I I . 1) i.e., E / ( 0 ) = 038 and writing the higher iterations 

32 We are indebted to Dr. J. G. Taylor for a discussion of this 
point. 

33 Considering the manner in which E'(p2) arises in (III. 13) 
one can easily see that E'(p2) came from the following combina­
tion of terms in the integral in (11.59): 

lim 
M 2 ^ 0 / 

s(*2-V) B(p2,m2,t2)dt2. 

Now from (111.31) 
B(p2,m2,t2)-- •LZz(t

2)-12Z(p2) 

= (t2-fi2)Z(p2)[Q^ 
J x— 

')dx 
t2 ' 

We thus get E'{p2) = 0 for this choice of YA. 
It is perhaps worth stressing that the choice of YA in this paper 

is not sacrosanct. For calculational case other choices satisfying 
the requisite boundary conditions may be equally acceptable. 
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as follows: 

1 ad{p2-m2) 
-ImZ<*+1>(#2) = l(a-3)(p2+m2)\Z^(p2)\2+2(p2~m2)2ReZ^^(p2)FJny(p'i)'], 
TT 2p2 

(III.9) 

1 ad{p2-m2) rmi/p2 

-ImE<n+»'(p2) = / dq* 
7T 2(p2 — m2)Z i2m2-p2 

\Z^(p2)\ 
A{p2+m2)2 9pA+Sp2q2+3m2q2+9m2p2+6mi 

p2—m2 P2~Q2 

+ReZ™(p*)Z™*(f)[ 

2+q2+2m2)2 ^+9p2q2+q^+7m2p2+5m2q2+6m-' 

q2—m2 )]• (111.10) 

At each iteration stage Eq. (III.9) improves Z(p2) and therefore FA [A], while Eq. (III. 10) gives the correspond­
ing TB ( r = F A + r B ) . The starting expressions from (III.9) are 

giving 

(1/TT) Im[Z^(p2)J-1= -Zad(p2~m2)/2p2'](a~3)(p2+m2) 

lZ^\p2)y-l^A+la{a~3){l~m2/p2)\ri{\-p2/m2), 

( I I I . l l ) 

(111.12) 

i.e., precisely the expressions written down in Part I I . 1. In the next order of the iteration, substitute (III.12) on 
the right-hand side (III.10). This gives (1/TT) Im£ / ( 1 ) which in the limit of large p2 equals34 

1 a 
-ImE^'ip2)™ 
IT 2p4. 

r° / 2 \ 2 r 1 

_p2 \a(3 — a) 

2a 

p2la(3-a)ln(p2/m2)J 

p2 ln2p2 

a^3. 

9p2+5q2^ 
4 )+ 

1 
/ 

(p2+q2)2 4:p*+9p2q< 

p2q2 Inp2 lnq2\ q2 p2-q2 

(III.13) 

Using the dispersion relation (III.8), we get for which has exactly the same form as (111.15) apart from 
E{iy(p2) an effective change in coupling35 and this behavior will 

2a persist in all higher orders. 
(p2-m2)E^/(p2)^ . (111.14) 

la(3-a)Jln(p2/m2) 
B. The Photon Equations 

Collecting all terms, this means that the "first-order" _.. _ , . __._. 
,. , ,i r n -n i Like the meson case, we first set down formal Hubert-correction to the full r equals T., , . .. . ... , . ' - . . ^ t , 

Muskhelishvili solutions for the photon propagator and 
Ta

{l){p,p') | P'
2=m2,*2=o vertex equations and then construct explicit expressions 

(P+P')a (P-P% for D and V by an iteration procedure where (as in 
-. (111.15) P a r t I- 1) the iteration starts by assuming T=TA[D']. 

a(3-a) ln(p2/m2) \a(3-a)2 ln(p2/m2) ' ' Rewrite Eqs. (11.56) and (11.85) in the form: 

As expected from the earlier discussion, the correction ^ ap , /±m\ s 
term (for the full T) ta/lnp2, behaves asymptotically in - ImZz~l(t2)= ( 1 ] 
the same way as the initial term TA~(p+p')a/\np2. If TT {t2-^2)\ t2 J 
we insert E{iy{p2) (i.e., the full T) of Eq. (III . 15) into 
(III.9), we obtain Z(p2) (and therefore IM[A]) to the 
next order: 

X^ ( / 2 -4m 2 ) |Z 3 - 1 ( ^ 2 ) ^ 2 ) | 
1 

1 2 r 2 ~i 
- I m Z < 2 ) ( £ 2 ) - 1 + 
TT a(a-3)ln2(p2/m2)L (a-3)2. 

i.e., 

ZZ^lrKp2) 

« 1 + l n ( _ } h + , ( in.16) 
2 W / L (a-3)2J 

• Im£(*2) = tan<9(/2) Re£(/2), 

where from (11.85), 

tanfl^G! 

0 &2{k2)Zz~
l{k2)dk2 

(111.17) 

(111.18) 

(111.19) 

35 The fact that the change in coupling seems appreciable is not 
to be taken too seriously. Thus our neglect of many-particie 
contributions to (III.9) and (III. 10) must be borne in mind as well 

34 The part of the integrand which gives rise to infrared diverg- as the approximation used to derive (III. 10) which is only roughly 
ence difficulties has been discarded and the asymptotic behavior unitary. The only important point is that the high-energy behavior 
of the logarithmic integral Jlt2 dk2/lnk2^t2/\nt2 has been used. remains stable. 
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The boundary conditions are Z3(0) = 8(0) = 1 while the 
stability criterion specifies that (apart from logarithmic 
factors) at worst S(t2) ~ 1 for large t2. 

Now the Muskhelishvili solution of (III. 18) [in­
corporating 5(0) = 1] gives 

S(t2) = exp 
6(x)dx " 

(x—t2)x. 
(III.20) 

and (apart from logarithmic factors) this behaves at 
infinity like36 

&(f)< 
"\m2 

L 4w2 J 

- 1 / T T 0 ( O O ) 

(111.21) 

for Zz(t
2) needs one subtraction, we write 

a rf 4m2 \3 / 2 

zr\t2) = \—t2\[\ J 
\Z3-

1(x)S(x)\2 

x dx, (111.24) 
x(x— t2) 

so that, apart from logarithmic factors, Zz~l(t2) ~ 1 just 
like perturbation theory. 

Like the case of the meson equations, one may now set 
up an iterative scheme to solve (III.20) and (III.24). 
One attractive scheme which is fairly close to perturba­
tion solution can be obtained by writing (III. 18) in 
the form 

Since from (III. 15) 6(^)^0, it is clear from a substi­
tution of (111.21) into (11.37) that Zd=(l-fGz)< °o. 
Also since S(t2) falls rapidly at infinity it is perfectly 
possible to write an unsubtracted dispersion relation 
for Z3(/2), 

zm 
a r/ Am2 

6 J \ x . 

4w 2 \ 3 / 2 I S(x) 12 

1 dx, 
I (x-t2) 

(111.22) 

provided a satisfies37 the boundary equation 

1 = Z8(0) = -
6, 

4w 2 \ 3 / 2 \S(x)\2 

1 J dx. (111.23) 

To see how the unsubtracted integral (III.22) behaves, 
consider the case /JL2 = 0 discussed in footnote 36. If 
8^1/(t2)1/2, (111.22) gives38 (apart from logarithmic 
factors) Z 3 ~ l / / 2 , i.e., the photon propagator D^ con­
stant for large t2. Intrinsically there is nothing in the 
discussion so far to preclude such behavior (the stability 
criterion is still satisfied since Z 3 ~ 1 / 2 £ ~ l ) ; however (in 
spite of the theoretical attractiveness of the eigenvalue 
Eq. (III.23) and the possibility of determining the fine 
structure constant 2ira from it), we do not feel warranted 
to entertain an unsubtracted dispersion relation just 
from a discussion based on the two-particle unitarity 
approximation with one-photon exchange. Taking the 
conservative attitude, i.e., that the dispersion integral 

36 From (IIL19) clearly 0(oo)^O. In order, however, that S(/2) 
does not increase faster than a constant (the stability criterion), 
the fine structure constant a must be restricted so that 

tan" u '° 82(^2)Z3-1(^2)^21 >0. 

For M2==0> 0(<*>) =x /2 so that this condition holds for all a > 0 and 

s(/2)~(iA2)1/2. 
37 In order that Z3 if) has no CDD zeroes, a has to lie within a 

special range of values (see footnote 22). Just to avoid introducing 
the unwanted CDD ambiguities, in (111.24) we have written a 
dispersion relation for Zi~l(f). 

38 Because of the gauge invariance of S(£2), S cannot depend 
on the gauge varying quantity G but only on the gauge-independ­
ent function G3. 

- lmZi~l(t2) S(t2) = tan(0+/3) R e ^ " 1 ^ 2 ) < ^ 2 ) ] , (111.25) 
7T 

where 
ImZs"1^2) 

tan/3 = . 
R e Z r 1 ^ 2 ) 

Assuming that the fine structure constant (2ira) is small 
so that tan(0+/3)^O, a first approximation to (III.20) 
which incorporates £(0) = Z3(0) = 1 is given by39 

5<°>"1(/2)Z8
(0)(^) = 1. 

Substituting this on the right in (III.24) we get 

(1/TT) Im[_Z^(t2)~Yl= -[at2/6(t2-n2)~] 

X(l~4:m2/t2y/29(t2-4m2), 
so that 

[ Z B ^ 2 ) ] - 1 

4 m 2 v 3 / 2 at2 r°° dx / 4ra2\ 
= 1 + — / ( 1 

6 J4m20c(t2—X)\ X / 

= CS(0)(^2)2-1- (IH.26) 

The Zz(t2) thus obtained coincides with the usual pertur­
bation expression. The higher iterations (defined below), 
however, differ. Thus if we write 

•ImZ3
( n + 1 )02) 

6 \ 

-Im<S<»+1>(*2) = 
7T 2 ( / 4 - 4 m 2 / 2 ) 1 / 2 

4m2 \3 / 2 

' — ) 
X6(t2-4cm2) I S^(t2) 12, (111.27) 

ad(t2-4:m2) 

X / dk2 RtS^(t2)8^\k2)Zz^-l(k2) 
J 4m2-t2 

(4:m2-t2-2k2)(2t2+k2~4:m2) 
X , (111.28) 

(4m2-t2)k2 

39 In a sense this is equivalent to an expansion of the exponent 
in 

assuming that tan""1^-}-/?) is proportional to a. 
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with Z3(0) = Z3
(1) , it is easy to see that explicitly in the 

"next order/ ' for example, 

1 ad(t2-^m2) 
-lmSM(t*)~ / dk2 

T 2t2(a/6) \n(t2/m2) Js •I 
X-

(t2+2k2)(2t2+k2) 

t2k2 a \u{k2/m2) 

72d(t2~4m2) 

i.e., 
a ln2(t2/m2) 

72dx 72 

, (IIL29) 

^ a(x— t2) ln2(x/m2) a \n(t2/m2) 
(111.30) 

This expression for Sa)(t2) [i.e. YB~] is to be compared 
with Sw(t2) (i.e. YA)~6/aln(t2/m2). The magnitude of 
the "correction" gives an idea of the "effective expan­
sion parameter." So far as the behavior at infinity is 
concerned this is 

g<i) - i_g(o) - i 
lim 

(l+(a/72) In/2)-(1+(a/6) In/2) 

(1+(a/6) In/2) 

11 

12 

with (g(0) and S™ given by (111.26) and (111.30), re­
spectively. The important remark is not the size of this 
"expansion parameter"; what we wish to stress re­
peatedly is that our major concern in this paper is with 
the high-energy behavior, and a consistent and stable 
behavior is being provided by our iteration procedure 
which starts with r = r ^ [ A , Z 7 ] (i.e., £<0> = Z3<°>). 

C. Summary 

To summarize the work of this section: 

(1) We have shown that Z ^ l i n v ^ Z(p2) = 0 for all 
a > 0 , a9^S in the two-particle unitarity approximation. 

(2) We have obtained two solutions for the photon 
equations; one of these corresponds to the usual pertur­
bation solution with one subtraction, the other is a new 
solution and exists only for special values of a, provided 
a no subtraction dispersion relation is assumed to hold. 
In this paper we do not wish to choose between the 
alternative solutions. 

(3) For either case a good first approximation to V 
is provided by 

X[_{p+pf)a-dah{t){p+pfUS(t2)-\)-]. (111.31) 

This expression has the merit that the two-particle 
photon (propagator as well as vertex) equations are 
exactly and identically solved for Y=YA. This is not true 
for the corresponding meson equations, but a simple 

iteration scheme can be set up which starting with YA, 
computes the full T out in successive stages. A con­
venient lowest iterate for A(0) is given by 

A^(p) = (p2~-m2)~1 

X [ l + | a ( a - 3 ) ( l - m 2 / ^ 2 ) l n ( l - ^ 2 / w 2 ) ] (111.12) 

and the corresponding iterate for £(0)(/2) (for the case 
when we allow one subtraction constant) is given by 

[_&^(t2)']-1^[_z^\t2)~yi 

at2 r dx 
-1+-

r dx / 4w 

J Am20c(t2 — X)\ X 

4 w V / 2 

(111.26) 

This YA has the property that when any pair of particles 
is placed on the mass shell its asymptotic behavior in 
the unphysical momentum k( = p, pf or /) is 

r[A<°>,I><o>> (p+p%/y Ink2- (p-p%/p Ink2 (111.32) 

with constants y and /3 proportional to the fine structure 
constant 2™. This characteristic behavior is always re­
tained in every subsequent iteration where A(0) and D(0) 

are replaced by A (n) and D ( n ) . This same behavior is 
exhibited by any iteration to the full Y (on the two-
particle mass shell)—i.e., YB behaves in the same manner 
as TA for large values of the momenta. 

2. VECTOR ELECTRODYNAMICS 

A. Alternative Solutions 

The power of the stability criterion in specifying ac­
ceptable high energy behavior of A, V and D is first 
really exhibited in the conventionally unrenormalizable 
theory of vector electrodynamics. A full discussion was 
given in I ; we summarize the conclusions. 

The Dyson equations for A are 

/p2-m0
2\ /d-(*«K«)\ 

Z1(p
2) = Z[ + i T r ( ) , (HL33) 

\p2~m2/ \p2-m2) 

Z^p2) = Zm 0
2+Tr(e • *aK«) • (111.34) 

Since by definition40 

Z = lim Zi(^2) and Zw 0
2 = lim Z2(p

2), (111.35) 

the second terms on the right of (111.33) and (111.34) 
must approach zero. Now a sufficient condition for 
YA&^l/k to hold [with YA for example defined in 

40 Dyson denned Z and Zm0
2 differently from (111.35), viz., as 

boundary values of A (and its derivative) at p2 = m2. The equiva­
lence of the two definitions when these constants are finite was 
shown in Paper I (footnote 6). In so far as Z is the boundary 
value of A 1, the renormalized Dyson equation, rewritten as 

A~x = ( l i m A - 1 ) ^ - ^ (vAYD-\ 

is clearly for from being just a simple integral equation of a 
conventional type. 
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(11.28)] is given by [see paper I, (2.21)] directly. This states 

lim p2Z1(p
2)^Z2(p

2). (111.36) Z3(^
2) = Z)-1(/2)A2=0(1), (111.38) 

There are two distinct possibilities:—[_A~} Either Zmo2 

is finite and (III.33) solves with the boundary behavior 
Zi(p2)^l/p2 (i.e., Z=0 automatically), or [ £ ] Z ^ O , 
but Z2(p

2)~p2. For this case the equations (111.33) and 
(111.34) must be carefully interpreted and m0

2 must be 
intrinsically quadratically infinite. For case [ / I ] , we 
expect therefore A « A 0 ~ 1 , TA^l/p. For case [~B], 
A^l/p2, TA^p. 

These two will be called the vector and the scalar alter­
natives, respectively.^1 The two alternatives are differenti­
ated by the number and character of subtraction 
constants. 

In Sees. B-E we assume m$< oo and investigate in 
detail the "vector alternative" turning briefly to the 
"scalar alternative" in Appendix I I I . I t appears that 
the "vector alternative" gives results similar to lowest 
order perturbation theory for the propagator A though 
not for T. The "scalar alternative" (mo2— oo) if it exists 
has no correspondence with the perturbation solution 
for A or T. 

B. Construction of TA 

Using Muskhelishvili methods we may (as for the 
case of scalar-electrodynamics) seek to find (formal) 
solutions for the set of equations for A, T, and D, and 
thereby verify that 

T~l/(ap+bp'), D~l/t2, 
Z1(p

2)~l/p2, Z2(p
2)~l. (111.37) 

Alternatively, we may use the simpler procedure of Part 
I. IB ; i.e., choose TA which satisfies TA~l/(ap+bp') 
and check from Eqs. (IL62-II.64) tha tZi , Z2, andZ) as 
well as TB (on two-particle mass shell) do exhibit the 
behavior (111.37). 

On account of the complexity of the equations for 
vector electrodynamics we use here the simpler pro­
cedure of Part I. IB. The required acceptable form for 
TA[_A,D~] will be constructed in stages, first by consider­
ing the photon equations and then the meson equations. 
For the photon case we explicitly solve both the propa­
gator and the vertex-function equations, and directly 
verify TB/TA~ 1 on the two-meson mass shell. For the 
meson case, only the propagator equation is solved 
explicitly, reliance being placed on a dimensional argu­
ment for the assertion TB/TA^1 (on the meson-photon 
mass shell). 

C. The Photon Equations 

Since the spectral function is gauge-independent and 
positive definite,26 one can use Lehmann's theorem 

41 The "scalar" alternative is the one conjectured for the full 
propagator A by T. D. Lee and C. N. Yang. [Phys. Rev. 128, 885 
(1962)] and arises after a summation of perturbation graphs. 

implying from (11.62) that t2S(t2), t2<M{t2) and t^(t2) 
behave in the like manner at infinity.42 

The stability criterion (on the mass shell p2=p/2=m2) 
however gives relations like 8{f)ZrllKP)~l/t2. Thus 
for consistency one needs 

Gz(t
2)~8(t2)~m(t2)~l/t2, Jg(/2)~1/;4 (IIL39) 

for large t2. 
Rewrite now Eqs. (11.62) and (11.97) in the form 

ImZ3-
1^-o:[/4|Z3~1^|2-2/4Re(Z3-1^) 

x(zr1m)*+fi\zz-
1m\*+-• •] (111.40) 

I m ( Z r 1 8) = tanfli Re(Zrx8) 

+ tan<92 Re(Z3-
12fTl)+ • • • (111.41) 

ImCZs^afTC) - tan<93 Re(Zrx8) 

+tan0 4 Re(Z3- l cJE)+ • • • (111.42) 

with a similar equation for Zf1^. Here tank's are com­
plicated functionals of Z3, 8, Ĵ  and <3\l. Just to examine 
the structure of these equations, consider (111.38) and 
(III.39) only. If 2flZ and J£ are treated as unknown func­
tions, Eq. (III.40) has the inhomogeneous Muskhelishvili 
form 

Im(Zfl 8) = tan<5 Re(Z3~18)+U(t2) . 

According to Muskhelishvili results, the (homogeneous) 
equation possesses a solution vanishing at infinity like 
1/t2 if and only if the phase change [Sg]-.*,00 = ir. This 
(and the analogous conditions for d^i, etc.) then are the 
(gauge-independent) restrictions on the possible values 
of the constants of the theory like a and the observed 
magnetic moment K, and are the restrictions mentioned 
in the introduction of this paper. 

This condition and its implications in terms of 
Castillejo, Dalitz, and Dyson (CDD) poles and bound-
states (Levinson's theorem) will be discussed in a 
separate paper. Assuming, however, the behavior 
(111.39) we may approximate T=TA or equivalently 
8= 8A[_Z{] as follows: Define43 

r G%(x)dx 
8A[_Z{] = AZz{t2) I , (111.43) 

J t2-x 
42 More precisely, from footnote (26) one infers that it is &(f), 

(/2)1/22flZ(/2) and x(t2) which must possess the stipulated behavior. 
An examination of the form of x(/2), however, shows that unless 
there are cancellations between t2Q, 9flZ and 8, in general the re­
striction must obtain as stated in the text. 

43 One can rewrite (111.43) in the form 

Z3(/2)[l-Z3(*2)] 
8 [Z3j==—¥zim • 
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a n d t ake as first approx ima t ion : 

S = 8A[_ZZ~], STC= (MA[_Z{]^K8A{t2), 
^ = ^ = o , (HI .44) 

where A is the normal iza t ion cons tan t [_—%fGz/xdx~] 
specified to ensure 5(0) = 1. Using r = TA from (111.44), 
E q . (11.62) reduces to the form 

1 
- I m Z 3 " 1 ( ^ ) = -

a / 4m 2 \ 

bnn\ t2 J 24m4/4 

X[( / 4 -4w 2 / 2 +12w 4 ) -2 i r / 2 ( / 2 -2m 2 )+Z 2 / 2 ( / 2 +4w 2 ) ] 

X 11-Z3(/2) 120(/2-4m2)(Z3'(G))2. (IIL45) 

If K— 1 (normal perturbation theory has such a mag­
netic moment) we notice that the bracketed expression 
in (III.40) has a less singular behavior at large t2 than 
for any other K. For reasons stressed further when we 
consider the meson equation, we wish to allow for a 
general value of K. In that case, a solution of (III.40) 
(exact in the asymptotic limit) can be constructed by 
first neglecting Z3 on the right side and solving for a 
constant Z3 '(0). This gives [allowing for one subtraction 
constant Z3(0) = 1], 

Z 8 - ^ 2 ) = l -
24m4 

dxf 

TA1" 
\ml X ^ 

4m-

X-
[_(x2-4:m2x+ 12w4) - 2Kx(x- 2m2)+K2x(x+4:m2)~] 

a t2 

• In . (111.46) 
24m 4 (Z 3 ' (0) ) 2 4m2 

T o obta in Z 3 ' (0) in ( I I I .46) all we need to do is solve 
the equa t ion which i t provides for itself, viz., 

z8-1'(o)=z8
,(o)= 

2 4 m 4 ( Z 3 ' ( 0 ) ) 2 J w * 4 \ 

r dxf 4w2\3/2 

Xl(x2-Am2x+i2m4)-~2kx(x-2m2)+k2x(x+4:m2)']. 
(111.47) 

Clearly, 8(t2)^m2/a2/H2 In/2. The eletcric and magnetic 
form factors for spin-one electrodynamics for the case 
K?*\ (more precisely l i m ^ [_8(t2)/m(t2)~]^l) are 
therefore highly convergent quantities. The solution 
(III.46) was obtained by neglecting Z3 on the right of 
(III.45). The form of (III.46) shows that this neglect 
was perfectly justified if we want to get the asymptotic 
behavior. To solve (III.45) exactly, substitute (III.46) 
for Z3 on the right and iterate.44 

44 To all intents and purposes we can regard Eq. (IIL46) as 
the exact initial Z3, since all boundary conditions are incorporated 
in its integral representation. The point is that it will be subject 
to corrections from further iterations specified in (111.48) in any 
case. 

So far we have not considered (11.97) for the full 
vertex function. We first verify that if the approxima­
tions 8=8A[_ZZ~], mZ=3TCA[Z3] with Z3 given by 
(111.46) are substituted on the right side of (11.97), the 
full 8 behaves similarly to &A[_Z{\. Explicitly, a lengthy 
calculation gives 

1 a 
~lm8{t2)~ • 
7T 32w4/8 

dk2Zi~l{k2)82(k2) 

XReS(t2)-(t2+2k2)(t2+k2) 

XL-4:ti(k2+2t2)+Ski(t2+k2)K+2tQK2'] 

Wdk2 

a2/S /10 J_t2 \nt2 l n A 2 0,2/3^2(^2)2 
(III.48) 

This has exactly the same behavior as Ym8A(t2). Like­
wise we have computed Im3TI(/2) and Im^(/2) and have 
shown that the form factors tend to zero in the expected 
manner, i.e., l//2(ln/2)2 and l//4(ln£2)2. These were some 
of the most lengthy and arduous calculations of this 
paper and the verification of the stated results was a 
consequence of a number of cancellations which could 
not have been foreseen when the calculations were 
first set up. 

To obtain Re£, Re SRI, and Rei£, one can write down 
dispersion relations. On account of the rapid convergence 
of 8, 2fll, and j£, dispersion relations for these quantities 
need no subtractions. If this is the case, the three 
conditions 

1 r lm8(x) 
< g ( 0 ) = l = — / dx, (111.49) 

1 rlm^l(x) 
m(0) = K= / dx, (111.50) 

7T J X 

lm^(x)dx~0 (111.51) 

[ t h e last necessary in order t h a t Q(t2) satisfies t he 
stabi l i ty criterion a n d exhibits a t infinity the behavior 
l / / 4 ] , de termine three equat ions for the three unknowns 
a, K and the (physical) quadrupole m o m e n t q, in t ro­
duced th rough the definition [see (11.55)] 

2? ImQ(x) dot 
+ 1-K. 

Condit ions ( I I I . 4 4 ) - ( I I L 4 6 ) are t he analogs (for our 
i tera t ion solution) of t he exact Muskhel ishvi l i restr ic­
tions ment ioned earlier on t he phase change like 

[s(s):u-=*. 
D. The Meson Propagator and the 

Final Form ofTA 

W e follow the procedure of P a r t I I I . 2C and examine 
first E q s . (11.63) and (11.65) for indicat ions of high-
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energy behavior of A and the full T. Unlike the photon 
case the spectral functions Gi and G2 are not positive 
definite except in the radiation gauge. Thus we cannot 
use the stronger form of Lehmann's theorem. However, 
the equations have the form 

I m Z f : —a[j>2+terms involving ZrlF, Z-rlM, e tc . ] , 

ImZ2 _ 1—a[l+terms involving Z2~
lZh Z2~

lE, etc.] 

so that barring a cancellation of the leading terms within 
the brackets [ ] , one may expect Z i ~ l / p 2 , Z 2 ~ l . In 
more detail if we consider (11.63) and (11.64) as they 
stand and impose the requirements of the vector alterna­
tive (see Part I I I . 2A), fG1d%< <*> and fG2dx< GO (Z 
and Znto2 finite), we would need 

Zt^E^M^pm'^pW^ptQ'^l/p2, Z 2 ^ l , 

or equivalently A « l and r~ l / ( ap+pp ' ) . With these 
boundary conditions, we are in a position to specify a 
form for r^[A,Z>]. The tentative form suggested in 
Eq. (11.28) satisfies Ward's identity but behaves un-
acceptably like a/p+b/p'. I t also has no functional de­
pendence on the photon propagator D. Both these 
shortcomings are simultaneously removed provided we 
replace in (11.28) the factor 

(P+P')agn> by [gwiP+P'h-Kigb^-gbJp] 
XLgab+dab(t)(l-S

A(t*m 

gatMiga.+d^m-^m 
gav by£gav+dav(t)(l-8

A(t*))-] 
and 

P*P>'(p + P')a b y Prf/(P + P%£gal,+ dabmi-SA(t2)n 

Writing out in full, we propose to choose45 

Ta»v
Ai^n^i-g»v{p+p')h+K{gh,tv-ga»)~] 

X[_-ga,+dah{t){\-8A{t2))~] z+ 
(x—m2)2Gi{x)d%~ 

{x-p2){x-pf2). 

+p,iga,+dwm-sA(t*mI ^^+p>iga»+da,(t)(i--s
A(t2mfgxdx 

+ P»Pv/(P + p,)£gab+dab(t)(l-S
A(t2))-] 

With this TA, the meson equations reduce exactly to the form 

x-p'2 

Q(x)dx 

{x-p2){x-p'2) 

1 ad{s—m2) 
- I m Z r 1 W = (s+m2)l3a(s+m2)2~2(s-m2)2-3(s2+10m2s+m")+2(s~m2)2(^ 
TT 24:m2s2 

(111.52) 

(111.53) 

1 a{s—m2)d{s—m2) 
- ImZ2(s) = • I3am4(s+m2) \Z2{s) \ 2~3(s~3m2)\F1(s) \2 

7T 8W%2 

- (5/4)(J-m 2) 2{s+m 2) | F2{s) \ 2-2{s-m2){2s+m2) ReF1*(s)F2(s)1, (111.54) 
where 

F1(s) = -±(s-ni2)(2-K)Z1(s)-m2Z2(s), F2(s) = (2-K)Z1(s). (111.55) 

Whereas Eq. (III.53) is immediately soluble, the same is not true for (111.54) except in the special circumstance 
K=2, corresponding to the fully symmetric Salam-Ward-Glashow electrodynamics.46 For simplicity of solution 
we might fix on K=2 to determine TA, other possible values being treated as a perturbation. For K=2y Eqs. 
(111.53) and (111.54) reduce to the form 

1 a{s-\-m2) 
- I m Z r 1 ( ^ ) = d(s-m2)l3(a~l)(s+m2)2-2(s2+10m2s+m4)+12(s~m2)2']: (IIL56) 
7r 24w2s2 

1 3a(s—m2) 
- I m Z 2 - " 1 W = d(s-m2)[a{sA-ni2)-{s-3ni2)~]. (111.57) 
7T 8<>2 

Since ImZ~1(s)^s, the dispersion representations for A will involve one extra subtraction constant other than 

^ 5 fGMdx 

45 Here we define more properly 

&A(f)= Hm AZ^if)-

where the limit fx2-^0 is taken at the end of a calculation. This ensures that E' — N' — Q' — O'm. (11.71) and (11.72) for the starting 
approximation T = TA. 

46 A. Salam and J. C. Ward. Nuovo Cimento 11, 568 (1959); S. Glashow, Nuc. Phys. 10, 107 (1959). 
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Zi(m2) = 1. This will be taken as Z(0) = Zi(0) = Z2(0).47 The fact that this subtraction is needed is another statement 
of the boundary condition Zi(p2)^\/p2, i.e., Z=0 for all a>0. The equations (111.56) and (III.57) possess the 
following solutions48: 

-l-Z-KO) s r00 lmZrl{oo)dx 
Z1-

l{s)^l + {s-w?) 
2 x(x—m2)(s—x)J 

and 

[ l - Z - ^ O ) ] s{s~m2)a r dx(x+m2) 
= l+(s-m2)— J i3(a-l)(x+3m2) + (10x-34m2)1 

m2 24m2 J xz{s—x) 

s a(3a+7)s / s \ 
« — [1-Z-K0)] In (— , (111.58) 

m2 24m2 \ w 2 / 

5 r™ ImZ2~
l{x)dx 

za-K*)=z-i(0)_ — - — _ 
TT J m* X(S—X) 

3as r00 dx(x—m2) 
= Z"1(0)H / [_a(x+m2)-(x-3m2)2 

8 7m2 #3(,y—a;) 
3a(a—l) / s \ 

«Z-K0)+ ln(—- J . (111.59) 
8 W 7 

Surprisingly, Zm0
2 = rims_*oo Z2(V) is also zero for this particular approximation (Z=0, ce>0). 

To treat the case of arbitrary K is not difficult. With the solutions (111.58) and (111.59) as the basic solutions 
a simple subsidiary iteration of (111.53) and (111.54) can readily be set up. We shall not write down the resulting 
expressions. With Z\(p2) and Z%{p2) known, TA can now be explicitly written down as below. 

E. Summary 

To summarize, vector electrodynamics is a finite theory, provided the following insertions are made in vertices 
and lines of irreducible diagrams for all Green's functions other than T, A, and D. This is because T, A, and D 
satisfy (111.37). 

r = r ^ = [ - ^ ( ^ + / ) 6 + 2 ( g 6 ^ - g f e ) , g ] [ g a & + 4 6 W ( i - ^ ( ^ 2 ) ) ] 

(p2~m2)Z1{p2)-(pf2-m2)Zl(p
f2) d(p2)-Hp'2) 

X +P^/(p+p,)£gab+dab(t)(l-S(t2))-]~ — 
p2~p'2 p2-p'2 

+pLgaV+dav{t){l- S(t2))-]d(p2)+p/lgafi+da,(t)(l- S(t2))2d(p/2) (111.60) 

^Kp)=-g^Mp2)(p2-™2)+p,pMp2) (IH.61) 

Dab-Kt) = dab(t)t
2Zz(t2)-tJb/a. (111.62) 

A convenient first choice for Zi, Z2, Z3, and & is as follows: 

at2 r™ dxf 4w2 \3 / 2 (x2+20m2x+12mA) 
Z 8 -K/ 2 )=l / — ( l , (111.63) 

24w 4 i 4 m 2 x 3 \ xJ (Z/CO))2^-/2) 
z3a2)[i-z3(/2)] 

g(/2) = (111.64) 
*2Z8 '(0) 

47 If the renormalization constants possess a correspondence with the constants in a Lagrangian, a term £i(dAlt
+/dxlt)(dAlr/dxll)) in 

Z0 would get renormalized to £'((dA p+/dxp) (dA ̂ /dxp)) where | / = ^+Z2
/(0). Terms of this type however are not gauge-independent. 

In conventional formulation of the theory, L0 contains only terms F^+F^+M^Ap+A* (i.e., £ = 0) so that one may require £' = 0. i.e, 
Z2

,(0) = %f[Gz{x)/x~]dx^=0. This requirement might be used to compute Z2(0). 
48 In writing (III. 58) we have neglected the part of the integrand, proportional to (a—3) characteristically, which gives rise to an 

infrared divergence. 
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(p2-m2)[\-Z-l(Q>)~] ap2(p2-m2) r (x+m2) 
Zr^p^U / dx [ 3 ( a - l ) ( ^ + 3 w 2 ) + 1 0 x - 3 4 m 2 ] , (111.65) 

m2 2\m2 J m
2 xz{p2—x) 

p2d(p2) = (p2-m2)Z1(p
2)+m' 

Sap2 f00 (x-m2) "l"1 

Z-K0)H / dx l(a-l)x+(a+3)m2'}\ . 
8 Jm* %Hi)2-x) J 

(111.66) 

To complete this set we also write down CAA (computed from TA of Eq. (111.60) as in the scalar case), 

C**(p,p';k,k') 

_, f L~g*v(x--m2)2Gi{x)+ptlpv
fq{x)~]dx 

J Lx-p2X%-(p+k)2Tx~P2J.%--(p-k)2li 

C Vabuv(p,pf; k,k'; x)(x—m2)2G\(x)dx r ^labfxv(p,pf; k,kf: x)Q(x)dx 
+K / + / , (IIL67) 

J [ x - ^ 2 ] [ ^ - ( ^ + ^ ) 2 ] [ ^ - ^ 2 ] [ x - ( ^ - ^ ) 2 ] J lx-p2Xoo-{p+k)2Jx-pf2Jix-{pf~k)2'} 

where K is the total magnetic moment, Nab is denned by Eq. (11.93), and Gi, g are the spectral functions of the 
meson propagator introduced in Eqs. (11.20) and (11.24), 

VabAP,P'; W; x) = [ g a ^ - g a M ^ ] [ ( 2 x ~ ^ 2 - ^ 2 ) ( ^ + ^ 0 & + ^ 6 ( ^ 2 - ^ 2 ) ] 

+ W / - g ^ ' I ( 2 * - ^ - ^ ) ( # + # ' ) a + i « ' ( # J - p ' 2 ) ] , (IH.68) 

and 

3W(W>'; *,*'; x)={x-p2)(x-p,2){ga»gbVlx-(p'-k)2^ 
+Z(p+P'+k\p»gbV(x-p'2)+(p+p'+k)bp;ga,(x^ 

+C(i>+#,-*0a^X*-^)+(#+#,-*)6M«(*-#,2)I*-(#+*)2]. (ni.69) 

These expressions provide a first (stable) approximation tarity. Rather than solve these equations ab initio, we 
and essentially solve in a good approximation the two- show in this section that the high-energy behavior ex-
particle unitarity equations. These can be improved hibited by the unitarity solutions is consistent with the 
upon, within the two-particle unitarity system of equa- corresponding Dyson set. This will ease our conscience. 
tions and also by incorporating higher particle states. In the equation 
Any improvement means a recomputation of A, T, and 
D by the methods described in Part I I I . 2 and is a r = Zr 0 +i£[r ,A,£>] (1.10) 
major undertaking. I t is, however, a perfectly feasible j __ , . 
undertaking.The"stabiUty"ofthestartingapproximation! approximate to K by the gauge-covanant e x p r e s s ^ 
however, will guarantee that any improvements will not alter j£= r"rATAr+ T A C + C A r l D (III.70) 
high-energy behavior. This is an important point. The 
general procedure for computing these improvements where C is the proper Compton graph. The choice of K 
has been described already in Parts 1.1, I I I . 1, and III.2. is the closest in Dyson-Schwinger terms to two-particle 
I t will be summarized in a practical form again in unitarity. Since 
Part IV, where also we discuss how good an approxima­
tion to the full theory is obtained by just the ansatz ie2 r 
of using (III.60)-(IIL66). '«*«= ~ — / < W ( # , p-k)A(p-k)T(p-k, p)D(k) 

3. THE DYSON-SCHWINGER EQUATIONS AND v(.f ., JA\(4>' — h'\T(<h'-.b A'mfbM fTTT 7U 
THE UNITARITY SOLUTIONS ~np , P ~k)A(P -k)T{p k, p )D(*)J, (111.71) 

Just to make doubly sure, we go finally back to the we obtain the following equation for A"1: 
Dyson set for the basic Green's functions. We saw that 
the unitarity equations for A and T in Parts I I I . 1 and _ _ ie2 

I I I . 2 were relatively easy to solve. The corresponding ^ (p) = ZAo W"~ 
Dyson equations are much more complicated; also, as 
mentioned earlier, any truncation of these results in x /tfkY(p, p-k)A(p-k)T(p-k, p)D(k). (111.72) 
equations which do not possess even approximate uni- J 
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A. Scalar Electrodynamics For >2 = 0 this verifies the well-known result 
Writing 

Ta(p,p') = (p+p,)a ~ ImA-Kx) = ~-(x2~m'). (IIL80) 

XlgahA(p\p'*)-dah{t)B(P\pf\m, (IIL73) 7r * 

where More generally, neglecting the radiative corrections to 
_ the photon line in (III.79) (these give rise to inessential 

4 (JJZ h'i\ __ fTjj 74) complications), the equation reduces to the form 

p2-p'2 

xA-1(x) = xZA(r
1(x) 

Eq. (III.72) reduces, when p is time-like, to the form 

ie2 + fdyK(x,y)A(y)lA-Kx)-A-Ky)J, (IIL81) 

A_1(x) = ZA0
_1(x) / dydz<p(x,y.,z)A(y) 

4X(2TT)3 i where49 

/ Ztr\z) <P2(%,y,z) K(x,y)~(ax2+t3xy+ay2)/(x-y)2 (111.82) 
XU^(x 3 y)+£(^ ;y ,2 )} 2 

^ s~~ M s for large x and y. As in the conventional Dyson treat-
\2v ment, we shall make two subtractions before considering 

] t (HI.75) the convergence of (III.81). This is achieved by using 
z / the boundary conditions Z%\x\? z—a\x2 

Here 
d A"1 (x) 

<P2(x,y,z) = x2+y2+z2-2xy- 2yz-2zx, (111.76) A " 1 ^ 2 ) = 0 , = 1, (IIL83) 
dx 

with which finally give for A - 1 

x=p*, y=(p-k)2 and z = k2. (111.77) 
A- 1 ^) = ZCAo"1^) ~ A(T W ) ~ (x- m2) {dA^/dx) | w«] 

fi2 is the photon mass and a specifies the gauge. 
Using now the iteration procedure described in Part f . 

I I I . 1 starting the approximation as in Eq. (III.9) with + {x-m ) J dyx{x,y)A{y) 

B(x}y,z) = _4 (*oO[Z8(«) - 1 ] x [ A - i ^ __ A - i ( y ) ] 2 , (111.84) 

with 
Eq. (111.75) reduces in the Fermi gauge (a= 1) to 

ier 

4T(2TT) 3J - - - ™ - ™ Clearly, 

1 <92ir(*,y) 1 
„ , xfev)~ — ; r . (IIL85) 

A-1(^) = ZA0-
1(^) dydz<p(x,y,z)A(y) * dx2 *(*;--y)2 

X 
l i /* dy 

ImA x ( x ) ^ ^ 

X 

x - y J z-n2+ie * J (x-y)2 

X {ImA(y) {Re2[A~1(x) - A~x(y)] <P2(x,y,z) fx2 (x-y)2 

Z»~\z) 
z Z3MO2 z 

' ( I I L 7 8 ) - I m 2 [ A - 1 W - A - 1 ( y ) ] } 

T , , f , f . f, ' , . + 2 R e A ( y ) R e [ A - i W - A - K y ) ] 
To recover second-order perturbation theory, make the 
usual approximations on the right-hand side XIm[A_ 1(x) —A_ 1(y)]}. (111.86) 

A~-l(x) — A~l(y) Inserting on the right of (111.86) the unitarity asymp-
Z3 = 1, M2 = MO2 , = 1 • to tic values 

x—y 
This gives - (1/Y) ImA(x)« 5(x-tn2)+(A/x) 

A - ^ ) = Z A 0 - ^ ) ~ ^ - / " ^ I m A - W - ^ l n 2 . (111.87) 
4X(2TT)3 J ________ A W ~ (A W # ) ~ReA(^), 

(p(X,y,z)(z ZX ly) 49This result remains the same even if the complete photon 
X" ; . ( I I I .79) propagator is included in (111.81), assuming for Zf~l(z) the uni-

(z—!JL2-\-ie)(y—M2-{-ie) tarity behavior ln(z/w2). 
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and using the following results50 

dy C(n) 

and 
a (x—y) \nny (lnx)71-1 

dy C(n)(n—1) 

a (x—y)2\nny x(lnx)w 

» > 1 (III.8 

all n, (111.89) 

we check that integrals appearing in (III.86), integrals 
like 

dy 

y(x—y)2 

' x y ~|2 

\nx lnyJ 

are precisely of order l/ln2x. This verifies that for large 
x we do indeed recover back the unitarity solution 
I m A - 1 ^ ) ^ ^ ' ln2x. This argument does no more than 
verify asymptotic self-consistency; it is impossible of 
course to make any statement about matching of A' 
with A in (111.87) without fully solving (III.78).51 

B. Vector Electrodynamics 

The Dyson equations for the longitudinal and trans­
verse parts of the meson propagator are much more 
complicated than in the scalar case but can still be 
written in the form 

x&rl(x)^ / dydzK(x,yz)[A-1(x) — A-1(y)'] 

X AOOCA-K*)- A- 1 (y)]+Z«A 0 - 1 («) , (HI.90) 

X = p2, y=(p — k)2, Z=k2. 

To show that the asymptotic solutions of (111.90) are 
correctly described by the unitarity solutions of Part 
I I I . 2 we shall concentrate on the transverse part of A. 
Equation (III.90) may then be reduced to the form 

x(x—m2)Zi(x) 

dyK(xyy)[_(x—m2)Z1(x) — (y—m2)Zi(y)22 

X(y-m2)Z1(y). (111.91) 

The kernel K(x,y) arise from quantities like 

_____ Tr[d(p)e(p')] 
50 For proof of (111.88) see Appendix D, G. Frye and R. L. 

Warnock, Phys. Rev. 130, 478 (1963). We are indebted to Dr. V. 
Barger for pointing out this reference. The relation (111.89) may 
be obtained by differentiating both sides of (III.88). Note that 
C(2) = l. 

61 It has not been shown here but we have checked that itera­
tions of (III. 78) (or indeed of the unitarity equations using the 
unitarity solutions), do lead to complicated transcendental func­
tions of the coupling constant with an essential singularity at a = 0. 

and it has the form 

(ax2+($xy+yy2)(a'x2+(3'xy+y'y2)/xy(x—y)2 

for large values of x and v. 
If we substitute the unitarity solutions of Part 11,1.2 

viz., 
1 

—•ImZr l(x)^[_d(x—m2)+A'](x—m2) 

•ImZ1(x)(x-m2)^(l/A) ln2x 

(x—?n2)Zi(x)~'R.e(x--ni2)Zi(x)~A lnx 

(111.92) 

in the right-hand side of (III.91) and make just two 
subtractions: Zi(w2) = 0, Zi(m2) = l, we obtain an 
integral of the type 

• ImZi(ff) -

- / 

y2dy 

(x—y)2 

y2dy 

(x-y)* 

ydy 

lmlZ1(y)(xZ1(x)~yZ1(y)y] 

ImZx(y) ^2{xZ1(x)~yZl{y))2, 

(x—y)' 

• 1 1 H 2 

.lnx lny. 

typically 

which does not converge. This means that an extra sub­
traction constant Z(0) is needed, exactly as we en­
countered in the unitarity equations. Making use of 
(III.91) and (111.92) we recover, as expected: 

1 r dy / 1 1 \ 2 

- ImZ1(x) « 
T J (x—y)2\\nx lny/ 

1 

xln2 

Part IV 

SUMMARY AND CONCLUSIONS 

In Part I I I . 2 we have set down the general form for 
rA[A,ZT]. (The actual expressions were not merely 
functionals of A and D but also of the form factors S; 
this was done in order to let TA approximate as closely 
as possible to the full I\) We have also written down a 
convenient first choice for A and D consistent with and 
solving the two-particle unitarity approximation. The 
claim is that if we draw irreducible diagrams for any 
other S-matrix element and insert TA, A, and D from 
(IIL60)-(IIL66) for the vertices and the lines, no in­
finities will ever appear in the theory. Our discussion, 
however, is still inadequate in two vital directions: 
(A) How to improve the approximation scheme; (B) the 
inclusion of C parts and the gauge covariance of result­
ing ^-matrix elements. 
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A. Improvement of the Approximation Scheme 

In principle this problem is completely solved once 
the general form of YA[_A,D~] is fixed. Given this form, 
one determines A, D, and the full Y by solving the Dyson 
equations to any desired approximation as fully described 
in Part I. IB. 

In practice, we did not solve these equations; we 
found it more convenient to use the two-particle uni-
tarity equations to construct explicit expressions for A 
and D. The practical problem of improving the approxi­
mation scheme is thus different from the problem in 
principle. First let us take the practical problem and 
indicate how to improve the unitarity approximation. 

(1) Fix the form of rA[A,Z>] (satisfying the Ward-
Takahashi identity with the requisite boundary prop­
erties and approximating as closely as possible to the full 
two-particle unitarity T). Compute, as in the text, AA 

and DA from the relevant two-particle unitarity equa­
tions [this involves only (01 cp | 1) = 8+ and (01 <P\2)~ YA~]. 

(2) Write down the Dyson expressions for all other 
Green's functions M[_A,T,D~] and substitute Y=YA, 
A=A^, D=DA to get MA[_AA,YA,DA~] and therefore 

(0M3),(0M4). 
(3) Use (0|<£>|3), etc., to recompute AA, DA, with 

three-particle and higher contributions taken into ac­
count. This gives the new YA[_AA,DA~] and the corre­
sponding improved expressions for MA. 

The scheme above is a consistent approximation to 
the full field theory; it is approximate to the extent that 
Y~YA. The next problem is to compute a better ap­
proximation to r and then carry through the steps 
(l)-(3) once again. If we possessed a spectral repre­
sentation for YB (for all three particles off the mass shell) 
analogous to the general spectral representation for A, 
one need only modify rules (l)-(3) above in an obvious 
manner. Unfortunately, no such representation exists.52 

We are forced therefore to fall back on the Dyson equa­
tions for A, F, and D. Here then is a practical prescrip­
tion for using AA, DA, YA computed above to provide a 
starting point for solving the Dyson equations. 

(4) Suppose step 1 (i.e., two-particle unitarity) has 
been carried through and AA, DA, YA are known. The 
corresponding approximate Dyson equations (see Sec. 
III . 3) are 

M A - O ^ I m 

Y=YA+X\ 

ZA0~
X+ / r A r i T L l m / YAYD (IV. 1) 

r A r A I \ D + / CAYD+ / YACD (IV.2) 

provided YA depends only on A (and not D). 

52 In the authors' opinion there is no problem in field theory more 
pressing than an integral representation for the full three-point 
function such that (like the representation for the two-point 
function) the connection of the kernel through unitarity with 
higher Green's functions is manifest. 

Rewrite (1) as 

ImA-1 = Im(A- 1 )^+Im / (YAYD-YA8+YA*8+) (IV.3) 

and solve (2) and (3) by iterations which start with 
F = YA, A= AA. We now possess the full A (and similarly 
D). Further terms can obviously be introduced on the 
right-hand side of (1) and (2) and procedures similar to 
the above carried through to any desired stage. 

In practice, it is hardly likely that step (4) will ever 
be carried out and the real possibility of improvement 
in computing Y beyond the approximation YA will come 
when a proper dispersion formula for Y is discovered. 

One merit of our formalism is perhaps worth stressing; 
the causality of this formalism in a Feynman sense is 
fully manifest. Every ^-matrix element can be written 
in the form 

•dxdydz* • •G(x)G(y) 
d*k 

(k*-x)l(p-k)*-yl 

This is true whether we use r = YA or the full Y obtained 
by iterating (2). 

B. C Parts 

The C-part contribution has a dual role; first, what 
we called the CAA and CAB parts in Part I I . 3 are neces­
sary to preserve gauge covariance; second the intrinsic 
CBB parts are basic insertions, in fact as basic as the 
vertex or self-energy insertions. So far as the problem 
of CBB contributions is concerned, we need to write a 
fourth Dyson-Schwinger equation. Gauge covariance of 
the theory, however, needs only the inclusion of CAA 

and CAB contributions. In this sense the shortcoming of 
the present paper in not considering CBB terms is not 
terribly serious. The problem of the computation of CAA 

and CAB contributions was solved in Part I I . 3 for scalar 
electrodynamics and for CAA terms in vector electro­
dynamics in Part I I I . 2. In a separate paper we propose 
to return to the computation of the CBB contributions. 
The procedure of choice is to use f3 formalism instead of 
the wave-formalism of this paper. In this case there are 
no C-part insertions at all though of course the number 
of form-factors are Y (as well as A) is considerably in­
creased. To anticipate the results, no difficulties appear 
so far as the problem of convergence of the integrals in 
the theory is concerned. In this subsequent paper will 
also be treated more fully the gauge covariance of the 
formalism which demands a definition of an (^-photon) 
CAA'"A part analogous to the CAA part above and its 
addition to higher matrix elements. 

The methods of this paper apply for all theories where 
a gauge transformation (partial or exact) exists. By 
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APPENDIX I: PHASE SPACE INTEGRALS 

We will present here a collection of relevant phase-space integrals for easy reference. Some overlap with equations 
in the text is unavoidable. The self-energy integrals are 

/ 
8+02"M2)S+E(/>-02-«3]'W= ^ ( * ^ W V ) = - - " C ) ! ' 2 " ( W + M ) 2 I ( ^ 2 ' ~ W 2 ~ - M 2 ) 2 - 4 J » V ] 1 / 2 - (Al) 

2p* Ip* 

In the special case when ix—*m 

Am^ 1/2 

and 

S+ip^-m^d+Kp-ty-m^p^-ll J d(f~4m2). (A2) 

As for the vertex integrals, 

r 7r0[>2--O+M)2] / -c^2)2^2 

/ d*qf(p*,q*)5+l(p'-q)*-n*l8+t(t-q)*-m^ = — — / <¥/0>V) (A3) 

r wd(t2-4:m2) r° 
dikt+[(k-py-m*'}8+[(p'-ky-miy(t\ki)= — — / dk*f(PJi*) (A4) 

J 2(t*-4mW)u* Jim'-t' 

in the limit as n —* m. 

APPENDIX II: LIST OF TRACES USED IN EQ. (11.96) 

In the evaluation of the spectral function of the photon propagator and the vertex function with the photon 
unphysical, we encounter a host of terms which involve traces of momenta and d and e projections. I\-Iu give 
definitions of symbols used in (11.96). 

h=kd(p)p' = kd(p')p = - * V/4»* 

h=p'd{p)p' =pd{p')p = -*2(l-/2/4™2) 

Iz=kd(p-k)k = kd(p'-k)k = -F(l-&2 /4m2) 

h=kd(p-k)p' =kd(p'-k)p = -*»(l-* , /4» ,-<V4»»1) 

h=Trd(p)d(p') ^Trd(p-k)d(p'~k) =(tl/4m*-P/m*+3) 

h=kd(p)d(p')k =kd(p-k)d(p'-k)k 

h=M(p)d{p')p =kd{p')d{p)p' 

h=kd(p-k)d(p'-k)p = kd(p'~k)d(p-k)p' 

h=p'd(p)d(p')p 

Iia=p'd(p)d(p-k)k ^pd(p')d(p'-k)k 

In=p'd(p)d(p'-k)k ^pd(p')d(p-k)k 

/1 2=kd(p- k)d(p)d(p')k = kd(p'-k)d(p')d(p)k 
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fu^kd(p~k)d(p)d(p')p 

Iu=kd(p'-k)d(p)d(p')k 

h^kd(p-k)d{p'-k)d(p')p 

IK=p'd(p-k)d{p'-k)d(p')p 

I17=kd(p-k)d(p'-k)d(p)p' 

In=Trd(p)d(p-k)d(p'-k)d(p') 

/«=p'd(p)d(p - k)d(p' - k)d(p')p 

Itn=kd(p~k)d(p)d(p')d(p'-~k)k 

121 =•• kd(p')d{p)d{p - k)d{p'~k)k 

In=kd(p')d{p)d{p~k)d{p'-k)p 

hz=pd(p')d(p)d(p - k)d(p' -k)k 

la=kd(p')d(p)d(p' - k)d(p-k)p' 

^kd(p'-k)d(p')A(p)p' 

= kd(p~k)d{p')d(p)k 

= kd(p'-k)d(p-k)d(p)p' 

= pd{p'-k)d(p-k)d(p)p' 

= kd(p'-k)d(p-k)d(p')p 

= kd(p)d(p')d(p' - k)d(p -k)k 

= kd(p)d(p')d(p' - k)d(p - k)p' 

= p'd(p)d(p')d(p'-k)d(p-k)k 

= kd(p)d(p')d(p-k)d(p' - k)p. 

For the case of the meson self-energy with <p defined 
as in (A.l) the following relations are useful: 

pd{t)p 

td{p)t 

td(p-~t)t 

= <?y v 
= <p2/4p2 

= <p2/4m2 

unrenormalized" propagator has the form 

gy.v , Pup* 1 

•Wo2 
-mtf wo p 

Txd(p)d(p-t) = 3+ cp2/4m2p2 

Trd(p-t)d(t) = 3+ <?2/4m2/x2 

Trd(^)d(/) = 3 + ^ 2 / 4 ^ V 

td(p)d(p~t)t = (^2-~p2-~m2)<p2/Sm2p2 

td{p-t)d{t)p - (p2~~m2~~fj.2)(p2/Sm2fji2 

pd{t)d{p)t = (p2+ij,2-tn2)<p2/8p2n2 

td{p-t)d(t)d(p)t - [ ( £ 2 - w2)2-M4]^2/16m2^V 

pd{t)d{p)d(p~t)t ^{_{m2-^)2-p^2/16m2p2^ 

td(p)i(p-t)d(t)p - [ > 4 - ( ^ 2 - M 2 ) 8 ] ^ 2 / 1 6 W 2 > V • 

APPENDIX III 

As remarked in Part III. 2A, if Znnz=^ oo, it is possible 
that alternative solutions to the Dyson equations may 
exist, with the boundary behavior 

A ^ l / £ 2 , r « # , D^l/i2. 

Very crudely one may see the effect of w0
2= °° 

(Z<GO) in the following manner. The so-called "free 

One may expect that as a result of self-energy correc­
tions the first term changes to the form ~gpV/(p2~~?n2) 
while the second drops off in the limit Wo2= °° giving 
for A the scalar behavior A^l/p2. 

To examine if the equations (11.71) and (11.72) for 
Zi(p2) and Z2(p

2) can possibly admit of solutions be­
having like Zi(p2)^l and Zz(p2)~p2, rewrite these 
equations in the form, 

ImZiip^ll+ap* ImM-f • • • ] 
-o :^ 2 [ |Z i | 2 +ReZ 1 *l f+-" ] (A5) 

ImZ2(p%l+ap2 ImZi+ap2 lmM-\ ] 
= a [ |Z 2 | 2 +(^ 2 ) 2 | Z 1 | 2 +- . . ] 7 (A6) 

or alternatively 

ImZrHp2) - £%2)+tan<9 ReZf1^2) (A7) 
where 

tan^^a^ 2ReM/(l+a^ 2ImM), (A8) 

U(p2)« (ap2/(l+ap2 ImM))[l + | Z^M | 2 ] , (A9) 

with a similar equation for Zfl(p2). 
Now if M(p2)~l (i.e. Y~p), the term aflmM 

dominates over 1 in the denominator of tan(9 and U(p2). 
Provided therefore that [0]m2OO~O, solutions may exist 
with the characteristic behavior Zi(p2)^l, Z2(p

2) — p2, 
Wo2—oo. In this case, however, since M(p2)^l, one 
may expect that (unlike the "vector" alternative) a new 
subtraction constant would be needed for the magnetic 
form factor. 
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In a sense the "scalar alternative" would exist if in 
the original Eqs. (A5) and (A6) 

InxZi-apK\Zi\2+ReMZ1*+\Mi\*+- - >) = Q. 

One can neglect completely ImZi for large p2 in com­
parison with the rest of the expression. Note that if 
M(^2)«l , U(p2) and tan0 are essentially independent 
of the fine structure constant 27ra. 

It is a puzzle to the authors how to construct the 
"scalar" solutions, to check their existence, and to check 
that no extra subtraction constants are introduced in 
the vertex function V (besides possibly a subtraction for 
magnetic moment) and in its relation to the vector 
alternative. It may be that a summation of all contribu­
tions in the "vector" alternative produces cancellations 
which reduce A (p2)«1 to «1/p2. Such cancellations are 
not impossible to conceive of for the meson propagator 
on account of the indefinite nature of Gi and Gi but for 
the photon propagator they seem unlikely to occur ex­
cept the special and exceptional case of the total mag­
netic moment K= 1 for the charged meson, a case where 
(as shown in the text) the high-energy behavior of the 
photon propagator has a very different character than 
for any other K. Note that for both the "vector" and 
"scalar" alternatives A1/2rA1/2^l//>. 

If the scalar alternative indeed exists, we have the 
interesting demonstration that the (renormalized) uni­

tarity equations (which essentially state relations be­
tween Re and Im parts) need supplementation by a 
specification of the number and character of subtraction 
constants to distinguish between possible alternative 
solutions. The number and nature of allowed subtrac­
tions in turn determines if the solution investigated 
exists for all values of the constants of the theory or 
only for special values. 

It has repeatedly been emphasized in the text that our 
stable solution to vector (and scalar) electrodynamics is 
not a solution where convergence has been obtained by 
summing certain subsets of graphs. Even though the 
final two-particle unitarity expressions for A resemble 
second-order perturbation expressions, the convergence 
of the theory comes not from A but from rA[A,J9] which 
displays scant resemblance to its perturbation counter­
part. Further, in principle, we have a procedure which 
builds up the full theory—-i.e., we can include every 
Dyson-Schwinger graph and without redundance at any 
stage. We do not claim that the precise form of TA 

chosen in the paper gives the best approximation from 
the point of view getting closest to physical answers, 
nor that after three-, four-, and higher particle contribu­
tions have been summed up, the behavior of A, T, etc., 
may not change. All we claim is that each unitarity 
contribution individually behaves in the manner indi­
cated in the text and that the stability criterion con­
tinues to be satisfied at each stage of computation. 


